-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
286 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
# (C) Copyright IBM 2023. | ||
# | ||
# This code is licensed under the Apache License, Version 2.0. You may | ||
# obtain a copy of this license in the LICENSE.txt file in the root directory | ||
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# Any modifications or derivative works of this code must retain this | ||
# copyright notice, and modified files need to carry a notice indicating | ||
# that they have been altered from the originals. | ||
|
||
"""Trotter simulation for diagonal Coulomb Hamiltonian.""" | ||
|
||
from __future__ import annotations | ||
|
||
import numpy as np | ||
import scipy.linalg | ||
|
||
from ffsim.gates import ( | ||
apply_diag_coulomb_evolution, | ||
apply_num_op_sum_evolution, | ||
apply_orbital_rotation, | ||
) | ||
from ffsim.hamiltonians import DiagonalCoulombHamiltonian | ||
from ffsim.trotter._util import simulate_trotter_step_iterator | ||
|
||
|
||
def simulate_trotter_diag_coulomb_split_op( | ||
vec: np.ndarray, | ||
hamiltonian: DiagonalCoulombHamiltonian, | ||
time: float, | ||
*, | ||
norb: int, | ||
nelec: tuple[int, int], | ||
n_steps: int = 1, | ||
order: int = 0, | ||
copy: bool = True, | ||
) -> np.ndarray: | ||
"""Diagonal Coulomb Hamiltonian simulation using split-operator method. | ||
Args: | ||
vec: The state vector to evolve. | ||
hamiltonian: The Hamiltonian. | ||
time: The evolution time. | ||
norb: The number of spatial orbitals. | ||
nelec: The number of alpha and beta electrons. | ||
n_steps: The number of Trotter steps. | ||
order: The order of the Trotter decomposition. | ||
copy: Whether to copy the vector before operating on it. | ||
- If `copy=True` then this function always returns a newly allocated | ||
vector and the original vector is left untouched. | ||
- If `copy=False` then this function may still return a newly allocated | ||
vector, but the original vector may have its data overwritten. | ||
It is also possible that the original vector is returned, | ||
modified in-place. | ||
Returns: | ||
The final state of the simulation. | ||
""" | ||
if order < 0: | ||
raise ValueError(f"order must be non-negative, got {order}.") | ||
if n_steps < 0: | ||
raise ValueError(f"n_steps must be non-negative, got {n_steps}.") | ||
if copy: | ||
vec = vec.copy() | ||
if n_steps == 0: | ||
return vec | ||
|
||
one_body_energies, one_body_basis_change = scipy.linalg.eigh( | ||
hamiltonian.one_body_tensor | ||
) | ||
step_time = time / n_steps | ||
|
||
current_basis = np.eye(norb, dtype=complex) | ||
for _ in range(n_steps): | ||
vec, current_basis = _simulate_trotter_step_diag_coulomb_split_op( | ||
vec, | ||
current_basis, | ||
one_body_energies, | ||
one_body_basis_change, | ||
hamiltonian.diag_coulomb_mats, | ||
step_time, | ||
norb=norb, | ||
nelec=nelec, | ||
order=order, | ||
) | ||
vec = apply_orbital_rotation(vec, current_basis, norb=norb, nelec=nelec, copy=False) | ||
|
||
return vec | ||
|
||
|
||
def _simulate_trotter_step_diag_coulomb_split_op( | ||
vec: np.ndarray, | ||
current_basis: np.ndarray, | ||
one_body_energies: np.ndarray, | ||
one_body_basis_change: np.ndarray, | ||
diag_coulomb_mats: np.ndarray, | ||
time: float, | ||
norb: int, | ||
nelec: tuple[int, int], | ||
order: int, | ||
) -> tuple[np.ndarray, np.ndarray]: | ||
diag_coulomb_aa, diag_coulomb_ab = diag_coulomb_mats | ||
eye = np.eye(norb) | ||
for term_index, time in simulate_trotter_step_iterator(2, time, order): | ||
if term_index == 0: | ||
vec = apply_orbital_rotation( | ||
vec, | ||
one_body_basis_change.T.conj() @ current_basis, | ||
norb=norb, | ||
nelec=nelec, | ||
copy=False, | ||
) | ||
vec = apply_num_op_sum_evolution( | ||
vec, | ||
one_body_energies, | ||
time, | ||
norb=norb, | ||
nelec=nelec, | ||
copy=False, | ||
) | ||
current_basis = one_body_basis_change | ||
else: | ||
vec = apply_orbital_rotation( | ||
vec, | ||
current_basis, | ||
norb=norb, | ||
nelec=nelec, | ||
copy=False, | ||
) | ||
vec = apply_diag_coulomb_evolution( | ||
vec, | ||
(diag_coulomb_aa, diag_coulomb_ab, diag_coulomb_aa), | ||
time, | ||
norb=norb, | ||
nelec=nelec, | ||
copy=False, | ||
) | ||
current_basis = eye | ||
return vec, current_basis |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# (C) Copyright IBM 2023. | ||
# | ||
# This code is licensed under the Apache License, Version 2.0. You may | ||
# obtain a copy of this license in the LICENSE.txt file in the root directory | ||
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# Any modifications or derivative works of this code must retain this | ||
# copyright notice, and modified files need to carry a notice indicating | ||
# that they have been altered from the originals. | ||
|
||
"""Tests for diagonal Coulomb Trotter simulation.""" | ||
|
||
from __future__ import annotations | ||
|
||
import numpy as np | ||
import pytest | ||
import scipy.sparse.linalg | ||
|
||
import ffsim | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"norb, nelec, time, n_steps, order, target_fidelity", | ||
[ | ||
(3, (1, 1), 0.3, 20, 0, 0.999), | ||
(4, (2, 1), 0.3, 10, 2, 0.999), | ||
(4, (2, 2), 0.3, 10, 1, 0.999), | ||
], | ||
) | ||
def test_random( | ||
norb: int, | ||
nelec: tuple[int, int], | ||
time: float, | ||
n_steps: int, | ||
order: int, | ||
target_fidelity: float, | ||
): | ||
rng = np.random.default_rng(2488) | ||
# generate random Hamiltonian | ||
dim = ffsim.dim(norb, nelec) | ||
one_body_tensor = ffsim.random.random_hermitian(norb, seed=rng) | ||
diag_coulomb_mat_aa = ffsim.random.random_real_symmetric_matrix(norb, seed=rng) | ||
diag_coulomb_mat_ab = ffsim.random.random_real_symmetric_matrix(norb, seed=rng) | ||
diag_coulomb_mats = np.stack([diag_coulomb_mat_aa, diag_coulomb_mat_ab]) | ||
dc_hamiltonian = ffsim.DiagonalCoulombHamiltonian( | ||
one_body_tensor, diag_coulomb_mats | ||
) | ||
linop = ffsim.linear_operator(dc_hamiltonian, norb=norb, nelec=nelec) | ||
|
||
# generate initial state | ||
dim = ffsim.dim(norb, nelec) | ||
initial_state = ffsim.random.random_state_vector(dim, seed=rng) | ||
original_state = initial_state.copy() | ||
|
||
# compute exact state | ||
exact_state = scipy.sparse.linalg.expm_multiply( | ||
-1j * time * linop, | ||
initial_state, | ||
traceA=np.sum(np.abs(diag_coulomb_mats)), | ||
) | ||
|
||
# make sure time is not too small | ||
assert abs(np.vdot(exact_state, initial_state)) < 0.98 | ||
|
||
# simulate | ||
final_state = ffsim.simulate_trotter_diag_coulomb_split_op( | ||
initial_state, | ||
dc_hamiltonian, | ||
time, | ||
norb=norb, | ||
nelec=nelec, | ||
n_steps=n_steps, | ||
order=order, | ||
) | ||
|
||
# check that initial state was not modified | ||
np.testing.assert_allclose(initial_state, original_state) | ||
|
||
# check agreement | ||
np.testing.assert_allclose(np.linalg.norm(final_state), 1.0) | ||
fidelity = np.abs(np.vdot(final_state, exact_state)) | ||
assert fidelity >= target_fidelity | ||
|
||
|
||
def test_hubbard(): | ||
rng = np.random.default_rng(2488) | ||
|
||
hubbard_model = ffsim.fermi_hubbard_2d( | ||
norb_x=3, | ||
norb_y=3, | ||
tunneling=1.0, | ||
interaction=4.0, | ||
chemical_potential=0.5, | ||
nearest_neighbor_interaction=2.0, | ||
periodic=False, | ||
) | ||
dc_hamiltonian = ffsim.DiagonalCoulombHamiltonian.from_fermion_operator( | ||
hubbard_model | ||
) | ||
norb = dc_hamiltonian.norb | ||
nelec = (norb // 2, norb // 2) | ||
time = 0.1 | ||
n_steps = 1 | ||
order = 1 | ||
target_fidelity = 0.999 | ||
|
||
dim = ffsim.dim(norb, nelec) | ||
linop = ffsim.linear_operator(dc_hamiltonian, norb=norb, nelec=nelec) | ||
|
||
# generate initial state | ||
dim = ffsim.dim(norb, nelec) | ||
initial_state = ffsim.random.random_state_vector(dim, seed=rng) | ||
original_state = initial_state.copy() | ||
|
||
# compute exact state | ||
exact_state = scipy.sparse.linalg.expm_multiply( | ||
-1j * time * linop, | ||
initial_state, | ||
traceA=np.sum(np.abs(dc_hamiltonian.diag_coulomb_mats)), | ||
) | ||
|
||
# make sure time is not too small | ||
assert abs(np.vdot(exact_state, initial_state)) < 0.98 | ||
|
||
# simulate | ||
final_state = ffsim.simulate_trotter_diag_coulomb_split_op( | ||
initial_state, | ||
dc_hamiltonian, | ||
time, | ||
norb=norb, | ||
nelec=nelec, | ||
n_steps=n_steps, | ||
order=order, | ||
) | ||
|
||
# check that initial state was not modified | ||
np.testing.assert_allclose(initial_state, original_state) | ||
|
||
# check agreement | ||
np.testing.assert_allclose(np.linalg.norm(final_state), 1.0) | ||
fidelity = np.abs(np.vdot(final_state, exact_state)) | ||
assert fidelity >= target_fidelity |