forked from alibaba/FederatedScope
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
176 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
import os | ||
import torch | ||
import numpy as np | ||
import pandas as pd | ||
import json | ||
import transformers | ||
|
||
from federatedscope.core.configs.config import global_cfg | ||
from federatedscope.core.cmd_args import parse_args, parse_client_cfg | ||
from federatedscope.core.auxiliaries.utils import setup_seed | ||
from federatedscope.core.auxiliaries.logging import update_logger | ||
from federatedscope.llm.misc.fschat import FSChatBot | ||
from federatedscope.core.data.utils import download_url | ||
|
||
transformers.logging.set_verbosity(40) | ||
|
||
choices = ["A", "B", "C", "D"] | ||
|
||
|
||
def format_subject(subject): | ||
ll = subject.split("_") | ||
s = "" | ||
for entry in ll: | ||
s += " " + entry | ||
return s | ||
|
||
|
||
def format_example(df, idx, include_answer=True): | ||
prompt = df.iloc[idx, 0] | ||
k = df.shape[1] - 2 | ||
for j in range(k): | ||
prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1]) | ||
prompt += "\nAnswer:" | ||
if include_answer: | ||
prompt += " {}\n\n".format(df.iloc[idx, k + 1]) | ||
return prompt | ||
|
||
|
||
def gen_prompt(train_df, subject, k=-1): | ||
prompt = "The following are multiple choice \ | ||
questions (with answers) about {}.\n\n".format(format_subject(subject)) | ||
if k == -1: | ||
k = train_df.shape[0] | ||
for i in range(k): | ||
prompt += format_example(train_df, i) | ||
return prompt | ||
|
||
|
||
@torch.no_grad() | ||
def eval(subject, model, tokenizer, test_df, device): | ||
cors = [] | ||
all_probs = [] | ||
|
||
for i in range(test_df.shape[0]): | ||
# get prompt and make sure it fits | ||
prompt = format_example(test_df, i, include_answer=False) | ||
|
||
input_ids = tokenizer( | ||
prompt, | ||
return_tensors="pt", | ||
max_length=tokenizer.model_max_length, | ||
).input_ids.to(device) | ||
|
||
while input_ids.shape[-1] > 1024: | ||
input_ids = tokenizer(prompt, | ||
return_tensors="pt").input_ids.to(device) | ||
|
||
label = test_df.iloc[i, test_df.shape[1] - 1] | ||
|
||
logits = model(input_ids=input_ids).logits[0, -1] | ||
|
||
probs = (torch.nn.functional.softmax( | ||
torch.tensor([ | ||
logits[tokenizer("A").input_ids[-1]], | ||
logits[tokenizer("B").input_ids[-1]], | ||
logits[tokenizer("C").input_ids[-1]], | ||
logits[tokenizer("D").input_ids[-1]], | ||
]).float(), | ||
dim=0, | ||
).detach().cpu().numpy()) | ||
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)] | ||
|
||
cor = pred == label | ||
cors.append(cor) | ||
all_probs.append(probs) | ||
|
||
acc = np.mean(cors) | ||
cors = np.array(cors) | ||
|
||
all_probs = np.array(all_probs) | ||
print("Average accuracy {:.3f} - {}".format(acc, subject)) | ||
|
||
return cors, acc, all_probs | ||
|
||
|
||
def main(): | ||
init_cfg = global_cfg.clone() | ||
args = parse_args() | ||
|
||
if args.cfg_file: | ||
init_cfg.merge_from_file(args.cfg_file) | ||
cfg_opt, client_cfg_opt = parse_client_cfg(args.opts) | ||
init_cfg.merge_from_list(cfg_opt) | ||
|
||
update_logger(init_cfg, clear_before_add=True) | ||
setup_seed(init_cfg.seed) | ||
|
||
# load your finetuned model (saved as xxx.ckpt) | ||
# in yaml file federate.save_to | ||
fschatbot = FSChatBot(init_cfg) | ||
tokenizer = fschatbot.tokenizer | ||
model = fschatbot.model | ||
device = fschatbot.device | ||
|
||
if not os.path.exists("data/FinEval"): | ||
download_url( | ||
"https://federatedscope.oss-cn-beijing.aliyuncs.com/FS" | ||
"-LLM/FinEval.zip", init_cfg.data.root) | ||
print("Please unzip the file and rerun") | ||
return | ||
|
||
data_dir = os.path.join(init_cfg.data.root, "FinEval") | ||
eval_dir = "finance_eval_result" | ||
|
||
subjects = sorted([ | ||
f.split("_dev.csv")[0] | ||
for f in os.listdir(os.path.join(data_dir, "dev")) if "_dev.csv" in f | ||
]) | ||
|
||
if not os.path.exists(eval_dir): | ||
os.makedirs(eval_dir) | ||
if not os.path.exists( | ||
os.path.join(eval_dir, "results_{}".format( | ||
init_cfg.federate.save_to))): | ||
os.makedirs( | ||
os.path.join(eval_dir, | ||
"results_{}".format(init_cfg.federate.save_to))) | ||
|
||
all_cors = [] | ||
|
||
for subject in subjects: | ||
test_df = pd.read_csv(os.path.join(data_dir, "dev", | ||
subject + "_dev.csv"), | ||
header=None) | ||
test_df = test_df.iloc[:, 1:7] | ||
|
||
cors, acc, probs = eval(subject, model, tokenizer, test_df, device) | ||
all_cors.append(cors) | ||
|
||
test_df["{}_correct".format(init_cfg.federate.save_to)] = cors | ||
for j in range(probs.shape[1]): | ||
choice = choices[j] | ||
test_df["{}_choice{}_probs".format(init_cfg.federate.save_to, | ||
choice)] = probs[:, j] | ||
test_df.to_csv( | ||
os.path.join(eval_dir, | ||
"results_{}".format(init_cfg.federate.save_to), | ||
"{}.csv".format(subject)), | ||
index=None, | ||
) | ||
|
||
results = {"subcategories": {}, "categories": {}} | ||
|
||
weighted_acc = np.mean(np.concatenate(all_cors)) | ||
results["weighted_accuracy"] = weighted_acc | ||
print("Average accuracy: {:.3f}".format(weighted_acc)) | ||
|
||
results_file = os.path.join( | ||
eval_dir, "accuracies_{}.json".format( | ||
init_cfg.federate.save_to.replace("/", "_"))) | ||
with open(results_file, "w") as f: | ||
json.dump(results, f) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |