-
Notifications
You must be signed in to change notification settings - Fork 488
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add a unit test for MoE layer. #7069
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,260 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
|
||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
from dataclasses import dataclass | ||
from typing import Optional | ||
|
||
import torch | ||
import torch.nn as nn | ||
from torch import Tensor | ||
from torch.nn import functional as F | ||
|
||
|
||
def find_multiple(n: int, k: int) -> int: | ||
if n % k == 0: | ||
return n | ||
return n + k - (n % k) | ||
|
||
@dataclass | ||
class ModelArgs: | ||
block_size: int = 2048 | ||
vocab_size: int = 32000 | ||
n_layer: int = 32 | ||
n_head: int = 32 | ||
dim: int = 4096 | ||
intermediate_size: int = None | ||
n_local_heads: int = -1 | ||
head_dim: int = 64 | ||
rope_base: float = 10000 | ||
norm_eps: float = 1e-5 | ||
num_experts: int = 8 | ||
num_activated_experts: int = 2 | ||
|
||
def __post_init__(self): | ||
if self.n_local_heads == -1: | ||
self.n_local_heads = self.n_head | ||
if self.intermediate_size is None: | ||
hidden_dim = 4 * self.dim | ||
n_hidden = int(2 * hidden_dim / 3) | ||
self.intermediate_size = find_multiple(n_hidden, 256) | ||
self.head_dim = self.dim // self.n_head | ||
|
||
@classmethod | ||
def from_name(cls, name: str): | ||
if name in transformer_configs: | ||
return cls(**transformer_configs[name]) | ||
# fuzzy search | ||
config = [config for config in transformer_configs if config in str(name).upper() or config in str(name)] | ||
assert len(config) == 1, name | ||
return cls(**transformer_configs[config[0]]) | ||
|
||
|
||
transformer_configs = { | ||
"Mixtral-8x7B-v0.1": dict(block_size=32768, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, rope_base=1000000.0, num_experts=8, num_activated_experts=2), | ||
} | ||
|
||
class KVCache(nn.Module): | ||
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16): | ||
super().__init__() | ||
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim) | ||
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) | ||
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) | ||
|
||
def update(self, input_pos, k_val, v_val): | ||
# input_pos: [S], k_val: [B, H, S, D] | ||
assert input_pos.shape[0] == k_val.shape[2] | ||
|
||
k_out = self.k_cache | ||
v_out = self.v_cache | ||
k_out[:, :, input_pos] = k_val | ||
v_out[:, :, input_pos] = v_val | ||
|
||
return k_out, v_out | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, config: ModelArgs) -> None: | ||
super().__init__() | ||
self.config = config | ||
|
||
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) | ||
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) | ||
self.norm = RMSNorm(config.dim, eps=config.norm_eps) | ||
self.output = nn.Linear(config.dim, config.vocab_size, bias=False) | ||
|
||
self.freqs_cis: Optional[Tensor] = None | ||
self.mask_cache: Optional[Tensor] = None | ||
self.max_batch_size = -1 | ||
self.max_seq_length = -1 | ||
|
||
def setup_caches(self, max_batch_size, max_seq_length): | ||
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: | ||
return | ||
head_dim = self.config.dim // self.config.n_head | ||
max_seq_length = find_multiple(max_seq_length, 8) | ||
self.max_seq_length = max_seq_length | ||
self.max_batch_size = max_batch_size | ||
for b in self.layers: | ||
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim) | ||
|
||
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.dim // self.config.n_head, self.config.rope_base) | ||
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)) | ||
|
||
def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor: | ||
assert self.freqs_cis is not None, "Caches must be initialized first" | ||
mask = self.causal_mask[None, None, input_pos] | ||
freqs_cis = self.freqs_cis[input_pos] | ||
x = self.tok_embeddings(idx) | ||
|
||
for i, layer in enumerate(self.layers): | ||
x = layer(x, input_pos, freqs_cis, mask) | ||
x = self.norm(x) | ||
logits = self.output(x) | ||
return logits | ||
|
||
@classmethod | ||
def from_name(cls, name: str): | ||
return cls(ModelArgs.from_name(name)) | ||
|
||
|
||
class TransformerBlock(nn.Module): | ||
def __init__(self, config: ModelArgs) -> None: | ||
super().__init__() | ||
self.attention = Attention(config) | ||
self.block_sparse_moe = MOEFeedForward(config) | ||
self.ffn_norm = RMSNorm(config.dim, config.norm_eps) | ||
self.attention_norm = RMSNorm(config.dim, config.norm_eps) | ||
|
||
def forward(self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor) -> Tensor: | ||
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) | ||
out = h + self.block_sparse_moe(self.ffn_norm(h)) | ||
return out | ||
|
||
|
||
class Attention(nn.Module): | ||
def __init__(self, config: ModelArgs): | ||
super().__init__() | ||
assert config.dim % config.n_head == 0 | ||
|
||
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | ||
# key, query, value projections for all heads, but in a batch | ||
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) | ||
self.wo = nn.Linear(config.dim, config.dim, bias=False) | ||
self.kv_cache = None | ||
|
||
self.n_head = config.n_head | ||
self.head_dim = config.head_dim | ||
self.n_local_heads = config.n_local_heads | ||
self.dim = config.dim | ||
self._register_load_state_dict_pre_hook(self.load_hook) | ||
|
||
def load_hook(self, state_dict, prefix, *args): | ||
if prefix + "wq.weight" in state_dict: | ||
wq = state_dict.pop(prefix + "wq.weight") | ||
wk = state_dict.pop(prefix + "wk.weight") | ||
wv = state_dict.pop(prefix + "wv.weight") | ||
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) | ||
|
||
def forward(self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Optional[Tensor] = None) -> Tensor: | ||
bsz, seqlen, _ = x.shape | ||
|
||
kv_size = self.n_local_heads * self.head_dim | ||
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) | ||
|
||
q = q.view(bsz, seqlen, self.n_head, self.head_dim) | ||
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) | ||
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) | ||
|
||
q = apply_rotary_emb(q, freqs_cis) | ||
k = apply_rotary_emb(k, freqs_cis) | ||
|
||
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | ||
|
||
if self.kv_cache is not None: | ||
k, v = self.kv_cache.update(input_pos, k, v) | ||
|
||
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | ||
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | ||
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) | ||
|
||
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) | ||
|
||
y = self.wo(y) | ||
return y | ||
|
||
|
||
class ConditionalFeedForward(nn.Module): | ||
def __init__(self, config): | ||
super().__init__() | ||
self.w1 = nn.Parameter(torch.empty(config.num_experts, config.intermediate_size, config.dim)) | ||
self.w2 = nn.Parameter(torch.empty(config.num_experts, config.dim, config.intermediate_size)) | ||
self.w3 = nn.Parameter(torch.empty(config.num_experts, config.intermediate_size, config.dim)) | ||
|
||
def forward(self, x: Tensor, expert_indices: Tensor) -> Tensor: | ||
w1_weights = self.w1[expert_indices] # [T, A, D, D] | ||
w3_weights = self.w3[expert_indices] # [T, A, D, D] | ||
w2_weights = self.w2[expert_indices] # [T, A, D, D] | ||
x1 = F.silu(torch.einsum('ti,taoi -> tao', x, w1_weights)) | ||
x3 = torch.einsum('ti, taoi -> tao', x, w3_weights) | ||
expert_outs = torch.einsum('tao, taio -> tai', (x1 * x3), w2_weights) | ||
return expert_outs | ||
|
||
|
||
class MOEFeedForward(nn.Module): | ||
def __init__(self, config) -> None: | ||
super().__init__() | ||
self.gate = nn.Linear(config.dim, config.num_experts, bias=False) | ||
self.cond_ffn = ConditionalFeedForward(config) | ||
self.dim = config.dim | ||
self.num_activated_experts = config.num_activated_experts | ||
def forward(self, x: Tensor) -> Tensor: | ||
x = x.view(-1, self.dim) | ||
# T = num_tokens, E = num_experts, D = hidden dim, A = activated experts | ||
# x: [T, D] | ||
scores = self.gate(x) # [T, E] | ||
expert_weights = F.softmax(scores, dim=-1) | ||
expert_weights, expert_indices = torch.topk(expert_weights, self.num_activated_experts, dim=-1) # [T, A], [T, A] | ||
expert_weights /= expert_weights.sum(dim=-1, keepdim=True) # [T, A] | ||
expert_outs = self.cond_ffn(x, expert_indices) | ||
return torch.einsum('tai,ta -> ti', expert_outs, expert_weights) | ||
|
||
|
||
class RMSNorm(nn.Module): | ||
def __init__(self, dim: int, eps: float = 1e-5): | ||
super().__init__() | ||
self.eps = eps | ||
self.weight = nn.Parameter(torch.ones(dim)) | ||
|
||
def _norm(self, x): | ||
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | ||
|
||
def forward(self, x: Tensor) -> Tensor: | ||
output = self._norm(x.float()).type_as(x) | ||
return output * self.weight | ||
|
||
|
||
def precompute_freqs_cis( | ||
seq_len: int, n_elem: int, base: int = 10000 | ||
) -> Tensor: | ||
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) | ||
t = torch.arange(seq_len, device=freqs.device) | ||
freqs = torch.outer(t, freqs) | ||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | ||
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | ||
return cache.to(dtype=torch.bfloat16) | ||
|
||
|
||
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | ||
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | ||
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) | ||
x_out2 = torch.stack( | ||
[ | ||
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | ||
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | ||
], | ||
-1, | ||
) | ||
|
||
x_out2 = x_out2.flatten(3) | ||
return x_out2.type_as(x) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import torch_xla2 | ||
import torch_xla2.interop | ||
import torch | ||
import unittest | ||
import jax | ||
|
||
|
||
from test.moe import model | ||
|
||
|
||
class TestMoe(unittest.TestCase): | ||
|
||
def _make_tiny_config(self): | ||
return model.ModelArgs( | ||
block_size = 128, | ||
vocab_size = 32000, | ||
n_layer = 4, | ||
n_head = 4, | ||
dim = 128, | ||
intermediate_size = None, | ||
n_local_heads = -1, | ||
head_dim = 32, | ||
rope_base = 10000, | ||
norm_eps = 1e-5, | ||
num_experts = 8, | ||
num_activated_experts = 2, | ||
) | ||
|
||
def _random_init(self, model): | ||
new_state_dict = {} | ||
|
||
for k, v in model.state_dict().items(): | ||
new_state_dict[k] = torch.randn_like(v) | ||
|
||
model.load_state_dict(new_state_dict, assign=True) | ||
return model | ||
|
||
|
||
|
||
def test_moe_layer(self): | ||
model_args = self._make_tiny_config() | ||
|
||
moe_layer = model.MOEFeedForward(model_args) | ||
moe_layer = self._random_init(moe_layer) | ||
seqlen = 32 | ||
x = torch.randn((seqlen, model_args.dim)) | ||
res = moe_layer(x) | ||
|
||
env = torch_xla2.default_env() | ||
model_xla = env.to_xla(moe_layer) | ||
x_xla = env.to_xla(x) | ||
with jax.default_matmul_precision('float32'): | ||
res_xla = model_xla(x_xla) | ||
res2 = torch_xla2.tensor.j2t(res_xla._elem) | ||
print('max diff', torch.max((res - res2).abs())) | ||
|
||
self.assertTrue( | ||
torch.allclose(res2, res, atol=1e-2)) | ||
|
||
# test can jit | ||
|
||
def f(weights, x): | ||
return torch.func.functional_call(moe_layer, weights, (x, )) | ||
|
||
fjitted = torch_xla2.interop.jax_jit(f) | ||
weights_xla = env.to_xla(moe_layer.state_dict()) | ||
|
||
print(fjitted(weights_xla, x_xla)) | ||
|
||
|
||
|
||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The memory consumption here seems pretty high? It's like you have num_token duplicated weights? So this will not introduce extra storage? Or maybe you are just considering inference where T is just 1?