Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Run shape propagation for inserted fx nodes #6805

Merged
merged 1 commit into from
Mar 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions test/stablehlo/export_tinyroberta_unbounded_dynamism.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import os

import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
import torch_xla
from torch.utils import _pytree as pytree
from torch.export import Dim, export
from torch_xla.stablehlo import exported_program_to_stablehlo
from torch_xla.tf_saved_model_integration import \
save_torch_module_as_tf_saved_model
from transformers import AutoModelForQuestionAnswering, AutoTokenizer

os.environ["EXPERIMENTAL_XLA_UNBOUNDED_DYNAMISM"] = "1"


class WrapModel(torch.nn.Module):

def __init__(self):
super().__init__()
self._model = AutoModelForQuestionAnswering.from_pretrained(
"deepset/tinyroberta-squad2")

def forward(self, input, mask):
res = self._model.forward(input, mask)
# return tuple(
# x for x in (res.loss, res.start_logits, res.end_logits,
# res.hidden_states) if x is not None)
return res.start_logits, res.end_logits


def _get_fake_pipeline_model_inputs():
tokens_len = 10
input_ids = torch.randint(
low=0, high=2000, size=(3, tokens_len), dtype=torch.int64)
attention_mask = torch.ones((3, tokens_len), dtype=torch.int64)
return (input_ids, attention_mask)


model = WrapModel()
args = _get_fake_pipeline_model_inputs()
dynamic_shapes = ({0: Dim("bs")}, {0: Dim("bs")})
# dynamic_shapes = None
ep = export(model, args=args, dynamic_shapes=dynamic_shapes)

tmp_dir = "/tmp/tiny_roberta/tiny_roberta_export"
save_torch_module_as_tf_saved_model(
model, args, tmp_dir, dynamic_shapes=dynamic_shapes)

tokens_len = 10
args = (torch.randint(
low=0, high=2000, size=(2, tokens_len),
dtype=torch.int64), torch.ones((2, tokens_len), dtype=torch.int64))
loaded_m = tf.saved_model.load(tmp_dir)
tf_input = pytree.tree_map_only(torch.Tensor, lambda x: tf.constant(x.numpy()),
args)

tf_output = loaded_m.f(*tf_input)
with torch.no_grad():
torch_output = model(*args)
print(np.max(torch_output[0].numpy() - tf_output[0].numpy()))
print(np.max(torch_output[1].numpy() - tf_output[1].numpy()))
4 changes: 2 additions & 2 deletions test/stablehlo/test_export_fx_passes.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,10 +63,10 @@ def test_embedding_indices_flatten(self):
flatten_embedding_indices_tensor(ep.graph_module)
ep.graph_module.recompile()
print(ep)
self.assertTrue('aten.view' in ep.graph_module.code)
self.assertTrue('aten.reshape' in ep.graph_module.code)
replace_dynamic_view_with_xla_op(ep.graph_module)
ep.graph_module.recompile()
self.assertTrue('aten.view' not in ep.graph_module.code)
self.assertTrue('aten.reshape' not in ep.graph_module.code)
self.assertTrue('xla.dynamic_view' in ep.graph_module.code)
out2 = ep.module()(*args)
self.assertTrue(torch.allclose(out1, out2))
Expand Down
66 changes: 42 additions & 24 deletions torch_xla/experimental/unbounded_dynamism_export.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,18 @@
import operator
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union

import torch
import torch_xla.experimental.xla_dynamic_reshape_ops
from torch._inductor.fx_utils import get_fake, get_fake_args_kwargs
from torch.export import export
from torch.fx import Graph, GraphModule, subgraph_rewriter
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_map

aten = torch.ops.aten


def wrap_func_as_nn_module(f):
def wrap_func_as_nn_module(f: Callable[..., Any]):

class M(torch.nn.Module):

Expand All @@ -16,6 +22,18 @@ def forward(self, *args):
return M()


def call_function(
graph: torch.fx.Graph,
target: Callable[..., Any],
args: Optional[Tuple[torch.fx.node.Argument, ...]] = None,
kwargs: Optional[Dict[str, torch.fx.node.Argument]] = None,
) -> torch.fx.Node:
node = graph.call_function(target, args, kwargs)
_, args, kwargs = get_fake_args_kwargs(node)
node.meta["val"] = target(*args, **kwargs)
return node


def native_layer_norm_impl(input, normalized_shape, weight, bias, eps):
mean = torch.mean(input, -1, keepdim=True)
rstd = torch.rsqrt(torch.var(input, -1, keepdim=True, correction=0) + eps)
Expand Down Expand Up @@ -52,7 +70,7 @@ def native_group_norm_pattern(x, weight, bias, N, C, HxW, group, eps):
group, eps)[0]


def decompose_dynamic_native_layer_norm(gm):
def decompose_dynamic_native_layer_norm(gm: GraphModule):
replaced_patterns = subgraph_rewriter.replace_pattern_with_filters(
gm,
native_layer_norm_pattern,
Expand All @@ -65,7 +83,7 @@ def decompose_dynamic_native_layer_norm(gm):
assert len(match_n) == 1


def decompose_dynamic_native_group_norm(gm):
def decompose_dynamic_native_group_norm(gm: GraphModule):
replaced_patterns = subgraph_rewriter.replace_pattern_with_filters(
gm,
native_group_norm_pattern,
Expand Down Expand Up @@ -99,7 +117,7 @@ def decompose_dynamic_shape_select(gm: GraphModule):
select_idx = n.args[2]
slice_args = (select_src_node, select_dim, select_idx,
(select_idx + 1), 1)
slice_node = graph.call_function(aten.slice, slice_args)
slice_node = call_function(graph, aten.slice, slice_args)
view_new_shape = []
for dim, size in enumerate(select_src_shape):
if dim == select_dim:
Expand All @@ -108,11 +126,11 @@ def decompose_dynamic_shape_select(gm: GraphModule):
view_new_shape.append(size)
else:
get_dim_size_args = (select_src_node, dim)
get_dim_size_node = graph.call_function(aten.sym_size.int,
get_dim_size_args)
get_dim_size_node = call_function(graph, aten.sym_size.int,
get_dim_size_args)
view_new_shape.append(get_dim_size_node)
view_args = (slice_node, view_new_shape)
view_node = graph.call_function(aten.view.default, view_args)
view_node = call_function(graph, aten.view.default, view_args)
n.replace_all_uses_with(view_node)
graph.erase_node(n)

Expand Down Expand Up @@ -143,8 +161,8 @@ def decompose_split_with_sizes(gm: GraphModule):
decomposed_slices = []
for size in split_sizes:
slice_args = (src_node, split_dim, start_idx, start_idx + size)
slice_node = graph.call_function(torch.ops.aten.slice.Tensor,
slice_args)
slice_node = call_function(graph, torch.ops.aten.slice.Tensor,
slice_args)
start_idx += size
decomposed_slices.append(slice_node)
consumers = n.users
Expand Down Expand Up @@ -181,8 +199,8 @@ def flatten_embedding_indices_tensor(gm: GraphModule):
for dim, size in enumerate(indices_shape):
if not isinstance(size, int):
get_dim_size_args = (indices_node, dim)
get_dim_size_node = graph.call_function(aten.sym_size.int,
get_dim_size_args)
get_dim_size_node = call_function(graph, aten.sym_size.int,
get_dim_size_args)
recover_view_shape.append(get_dim_size_node)
else:
flatten_mul_scale *= size
Expand All @@ -191,21 +209,22 @@ def flatten_embedding_indices_tensor(gm: GraphModule):
recover_view_shape.append(weight_shape[-1])

mul_args = (get_dim_size_node, flatten_mul_scale)
flatten_size_node = graph.call_function(aten.mul.Scalar, mul_args)
flatten_size_node = call_function(graph, operator.mul, mul_args)
view_args = (indices_node, [flatten_size_node])
view_node = graph.call_function(aten.view, view_args)
view_node = call_function(graph, aten.reshape, view_args)
new_embedding_args = n.args[0:1] + (view_node,)
if len(n.args) > 2:
new_embedding_args += n.args[2:]
n.args = new_embedding_args
with graph.inserting_after(n):
recover_view_args = (n, recover_view_shape)
recover_view_node = graph.call_function(aten.view, recover_view_args)
recover_view_node = call_function(graph, aten.reshape,
recover_view_args)
n.replace_all_uses_with(recover_view_node)
recover_view_node.update_arg(0, n)


def _is_no_op_slice(n):
def _is_no_op_slice(n: torch.fx.Node):
assert n.op == "call_function" and n.target == aten.slice.Tensor
return n.args[2] == 0 and n.args[3] == torch.iinfo(torch.int64).max

Expand Down Expand Up @@ -267,6 +286,8 @@ def replace_dynamic_view_with_xla_op(gm: GraphModule):
'''
g = gm.graph
ATEN_VIEW_OPS = [
torch.ops.aten.reshape,
torch.ops.aten.reshape.default,
torch.ops.aten.view,
torch.ops.aten.view.default,
torch.ops.aten._unsafe_view,
Expand All @@ -290,10 +311,7 @@ def replace_dynamic_view_with_xla_op(gm: GraphModule):
mul_scaler = 1
sym_size_node = dynamic_src
mul_node = None
if hasattr(
dynamic_src.target,
"__name__") and (dynamic_src.target.__name__ == "mul" or
dynamic_src.target.__name__ == "mul.Scalar"):
if dynamic_src.target == operator.mul:
assert isinstance(dynamic_src.args[0], int) or isinstance(
dynamic_src.args[1], int)
mul_node = dynamic_src
Expand Down Expand Up @@ -326,22 +344,22 @@ def dynamic_unsqueeze_to_view(gm: GraphModule):
]
if len(symbolic_dims) == 0:
continue
assert len(symbolic_dims) == 1, "Only 1 dimention can be symbolic."
assert len(symbolic_dims) == 1, "Only 1 dimension can be symbolic."
view_args = list(src_shape)
with graph.inserting_before(n):
for dim in symbolic_dims:
get_size_node = graph.call_function(aten.sym_size.int,
(unsqueeze_src, dim))
get_size_node = call_function(graph, aten.sym_size.int,
(unsqueeze_src, dim))
view_args[dim] = get_size_node
squeezed_dim = n.args[1]
view_args = (unsqueeze_src,
view_args[:squeezed_dim] + [1] + view_args[squeezed_dim:])
view_node = graph.call_function(aten.view, view_args)
view_node = call_function(graph, aten.view, view_args)
n.replace_all_uses_with(view_node)
graph.erase_node(n)


def exported_program_has_symbolic_input_shape(ep):
def exported_program_has_symbolic_input_shape(ep: torch.export.ExportedProgram):
for n in ep.graph_module.graph.nodes:
if n.op == "placeholder":
fake_t = n.meta['val']
Expand Down
4 changes: 2 additions & 2 deletions torch_xla/experimental/xla_dynamic_reshape_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from torch_xla.core.xla_model import XLA_LIB

XLA_LIB.define(
"dynamic_expand(Tensor input, int[] size, Tensor src_tensor, int src_dim, int target_dim) -> Tensor"
"dynamic_expand(Tensor input, SymInt[] size, Tensor src_tensor, int src_dim, int target_dim) -> Tensor"
)


Expand Down Expand Up @@ -61,7 +61,7 @@ def dynamic_expand_meta(


XLA_LIB.define(
"dynamic_view(Tensor input, int[] size, Tensor src_tensor, int src_dim, int target_dim, float mul_scaler) -> Tensor"
"dynamic_view(Tensor input, SymInt[] size, Tensor src_tensor, int src_dim, int target_dim, float mul_scaler) -> Tensor"
)


Expand Down
Loading