Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add all-gather coalescing for FSDP/ZeRO1 #5950

Merged
merged 13 commits into from
Dec 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 29 additions & 2 deletions test/test_torch_distributed_xla_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import functools
import os
import re
from unittest import mock
from unittest import mock, skipIf

from absl.testing import absltest, parameterized
import torch
Expand All @@ -12,6 +12,15 @@
import torch_xla.distributed.xla_backend
from torch_xla import runtime as xr

from datetime import timedelta


def get_process_group_xla(rank, size):
pg_xla_creator = dist.Backend._plugins['XLA'].creator_fn
pg_xla = pg_xla_creator(
prefix_store=None, rank=rank, size=size, timeout=timedelta(minutes=1))
return pg_xla


def hlo_matches(hlo, expected_pattern, match_times=1):
matches = re.findall(expected_pattern, hlo)
Expand Down Expand Up @@ -87,6 +96,25 @@ def test_allgather(self):
hlo = torch_xla._XLAC._get_xla_tensors_hlo(output_tensors)
hlo_matches(hlo, all_gather_pattern)

@patch_world(rank=3, size=8)
def test_allgather_coalesced(self):
device = xm.xla_device()
tensor = torch.arange(2, device=device) + 1 + 2 * dist.get_rank()
tensor2 = torch.arange(5, device=device) + 1 + 2 * dist.get_rank()
pg_xla = get_process_group_xla(rank=3, size=8)
output_tensors = [torch.zeros_like(tensor)] * 8
output_tensors2 = [torch.zeros_like(tensor2)] * 8
# because we set os.environ[xenv.WORLD_SIZE] = '1', here the outputs'
# shapes will be same as the inputs' shapes.
# Ex: %all-gather.26 = (s64[2]{0}, s64[5]{0}) all-gather(s64[2]{0} %get-tuple-element.24, s64[5]{0} %get-tuple-element.25), replica_groups={}, dimensions={0}
all_gather_pattern = (
r'%all-gather\.\d+ = \(s64\[2]\{0}, s64\[5]\{0}\) '
r'all-gather\(s64\[2]\{0} %.+\.\d+, s64\[5]\{0} %.+\.\d+\)')
pg_xla.allgather_coalesced([output_tensors, output_tensors2],
[tensor, tensor2])
hlo = torch_xla._XLAC._get_xla_tensors_hlo(output_tensors)
hlo_matches(hlo, all_gather_pattern)

def test_broadcast(self):
device = xm.xla_device()
tensor = torch.arange(2, device=device) + 1 + 2 * dist.get_rank()
Expand Down Expand Up @@ -291,7 +319,6 @@ def test_barrier(self):

@parameterized.parameters(
'reduce',
'allgather_coalesced',
'allreduce_coalesced',
'alltoall',
'alltoall_base',
Expand Down
34 changes: 24 additions & 10 deletions torch_xla/core/xla_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -570,17 +570,31 @@ def all_gather(value, dim=0, groups=None, output=None, pin_layout=True):
shard_count = xrt_world_size()

token, devctx = _get_all_reduce_token()
if output != None:
# Call the out of place version of the all_gather
new_token = torch_xla._XLAC._xla_all_gather_out(output, value, token, dim,
shard_count, groups or [],
pin_layout)
torch_xla._XLAC._set_all_reduce_token(devctx.device, new_token)
return output

result = torch_xla._XLAC._xla_all_gather(value, dim, shard_count, groups or
[], pin_layout)
return result
if isinstance(value, torch.Tensor):
if output != None:
# Call the out of place version of the all_gather
new_token = torch_xla._XLAC._xla_all_gather_out(output, value, token, dim,
shard_count, groups or [],
pin_layout)
torch_xla._XLAC._set_all_reduce_token(devctx.device, new_token)
return output

result = torch_xla._XLAC._xla_all_gather(value, dim, shard_count, groups or
[], pin_layout)
return result

# Now the input should be a list of Tensors.
elif isinstance(value, list) and all(
isinstance(v, torch.Tensor) for v in value):
result = torch_xla._XLAC._xla_all_gather_coalesced(value, token, dim,
shard_count, groups or
[], pin_layout)
torch_xla._XLAC._set_all_reduce_token(devctx.device, result[-1])
return result[:-1]
else:
raise TypeError("`value` needs to be a Tensor or a list of Tensors, but "
f"given {type(value)}.")


def all_to_all(value,
Expand Down
48 changes: 48 additions & 0 deletions torch_xla/csrc/cross_replica_reduces.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,45 @@ AllGatherResult BuildAllGather(xla::XlaOp input, xla::XlaOp token, int64_t dim,
return {all_gather_result, token_handler.GetNewToken(all_gather_result)};
}

AllGatherResultCoalesced BuildAllGatherCoalesced(
absl::Span<const xla::XlaOp> inputs, xla::XlaOp token, int64_t dim,
int64_t shard_count, const std::vector<std::vector<int64_t>>& groups,
bool pin_layout) {
std::vector<xla::ReplicaGroup> cc_groups = CreateReduceGroups(groups);
TokenHandler token_handler(token);
// TODO: We use pseudo-tokens ATM, which are real values. This need to be
// switched to use the real XLA Token once support has been added to XLA
// AllGather().
ReduceContext cc_ctx = GetReduceContext(inputs);
std::vector<xla::XlaOp> result(inputs.size());

for (auto& type_ctx : cc_ctx.contexts) {
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if you want to assume there is only one type_ctx, let's not use the for loop and GetReduceContext at all. This way we don't need to handle the token per type.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let me check with others on this.

xla::XlaOp all_gather_result;
type_ctx.second.ops[0] = token_handler.GetInput(
type_ctx.second.ops[0], &type_ctx.second.operand_shapes[0]);
if (pin_layout) {
all_gather_result = xla::AllGather(
xla::Tuple(inputs[0].builder(), type_ctx.second.ops), dim,
shard_count, cc_groups, /*channel_id=*/absl::nullopt,
/*layout=*/
MakeReduceShape(type_ctx.second.operand_shapes).layout());
} else {
all_gather_result =
xla::AllGather(xla::Tuple(inputs[0].builder(), type_ctx.second.ops),
dim, shard_count, cc_groups);
}
if (ShapeHelper::ShapeOfXlaOp(all_gather_result).rank() == 0) {
for (size_t i = 0; i < type_ctx.second.indices.size(); ++i) {
size_t op_idx = type_ctx.second.indices[i];
result[op_idx] = xla::GetTupleElement(all_gather_result, i);
}
} else {
result[0] = all_gather_result;
}
}
return {result, token_handler.GetNewToken(result[0])};
}

CollectivePermuteResult BuildCollectivePermute(
xla::XlaOp input, xla::XlaOp token,
const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs) {
Expand Down Expand Up @@ -309,6 +348,15 @@ ReduceScatterResult BuildReduceScatter(
return {reduce_result, token_handler.GetNewToken(reduce_result)};
}

std::vector<torch::lazy::Value> GetOperandListWithToken(
c10::ArrayRef<torch::lazy::Value> operands,
const torch::lazy::Value& token) {
std::vector<torch::lazy::Value> operand_list(operands.begin(),
operands.end());
operand_list.push_back(token);
return operand_list;
}

const torch::lazy::Value& GetAllReduceToken(
const torch::lazy::BackendDevice& device) {
auto it = g_all_reduce_tokens.find(device.ordinal());
Expand Down
17 changes: 16 additions & 1 deletion torch_xla/csrc/cross_replica_reduces.h
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
#include "absl/types/span.h"
#include "torch/csrc/lazy/core/ir.h"
#include "torch_xla/csrc/device.h"
#include "torch_xla/csrc/ir.h"
#include "xla/client/xla_builder.h"

namespace torch_xla {
Expand All @@ -29,6 +30,11 @@ struct AllGatherResult {
xla::XlaOp token;
};

struct AllGatherResultCoalesced {
std::vector<xla::XlaOp> result;
xla::XlaOp token;
};

struct CollectivePermuteResult {
xla::XlaOp result;
xla::XlaOp token;
Expand Down Expand Up @@ -65,6 +71,11 @@ AllGatherResult BuildAllGather(xla::XlaOp input, xla::XlaOp token, int64_t dim,
const std::vector<std::vector<int64_t>>& groups,
bool pin_layout);

AllGatherResultCoalesced BuildAllGatherCoalesced(
absl::Span<const xla::XlaOp> inputs, xla::XlaOp token, int64_t dim,
int64_t shard_count, const std::vector<std::vector<int64_t>>& groups,
bool pin_layout);

CollectivePermuteResult BuildCollectivePermute(
xla::XlaOp input, xla::XlaOp token,
const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs);
Expand All @@ -80,6 +91,10 @@ ReduceScatterResult BuildReduceScatter(
int64_t scatter_dim, int64_t shard_count,
const std::vector<std::vector<int64_t>>& groups, bool pin_layout);

std::vector<torch::lazy::Value> GetOperandListWithToken(
c10::ArrayRef<torch::lazy::Value> operands,
const torch::lazy::Value& token);

const torch::lazy::Value& GetAllReduceToken(
const torch::lazy::BackendDevice& device);
void SetAllReduceToken(const torch::lazy::BackendDevice& device,
Expand All @@ -89,4 +104,4 @@ AllReduceType GetReduceType(c10::string_view reduce_type);

} // namespace torch_xla

#endif // XLA_TORCH_XLA_CSRC_CROSS_REPLICA_REDUCES_H_
#endif // XLA_TORCH_XLA_CSRC_CROSS_REPLICA_REDUCES_H_
40 changes: 40 additions & 0 deletions torch_xla/csrc/init_python_bindings.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,25 @@ at::Tensor AllGather(const at::Tensor& input, int64_t dim, int64_t shard_count,
return bridge::AtenFromXlaTensor(std::move(result));
}

std::pair<std::vector<at::Tensor>, std::shared_ptr<torch::lazy::Value>>
AllGatherCoalesced(const std::vector<at::Tensor>& tensors,
const std::shared_ptr<torch::lazy::Value>& token,
int64_t dim, int64_t shard_count,
const std::vector<std::vector<int64_t>>& replica_groups,
bool pin_layout) {
std::vector<XLATensorPtr> xtensors =
GetXlaTensors(tensors, /*want_all=*/true);
std::vector<XLATensorPtr> result;
torch::lazy::Value new_token;
std::tie(result, new_token) = tensor_methods::all_gather(
xtensors, *token, dim, shard_count, replica_groups, pin_layout);
std::vector<at::Tensor> aten_result;
for (auto& xt : result) {
aten_result.emplace_back(bridge::AtenFromXlaTensor(std::move(xt)));
}
return {aten_result, std::make_shared<torch::lazy::Value>(new_token)};
}

std::shared_ptr<torch::lazy::Value> AllGatherOut(
at::Tensor& output, const at::Tensor& input,
const std::shared_ptr<torch::lazy::Value>& token, int64_t dim,
Expand Down Expand Up @@ -1152,6 +1171,27 @@ void InitXlaModuleBindings(py::module m) {
}
return new_token;
});
m.def("_xla_all_gather_coalesced",
[](const std::vector<at::Tensor>& tensors,
const std::shared_ptr<torch::lazy::Value>& token, int64_t dim,
int64_t shard_count, const py::list& groups, bool pin_layout) {
std::vector<std::vector<int64_t>> replica_groups =
CreateReduceGroups(groups);
std::vector<at::Tensor> results;
std::shared_ptr<torch::lazy::Value> new_token;
{
NoGilSection nogil;
std::tie(results, new_token) = AllGatherCoalesced(
tensors, token, dim, shard_count, replica_groups, pin_layout);
}
auto result_list = py::list(results.size() + 1);
for (int i = 0; i < results.size(); ++i) {
result_list[i] = torch::autograd::make_variable(
results[i], /*requires_grad=*/results[i].requires_grad());
}
result_list[results.size()] = new_token;
return result_list;
});
m.def("_xla_collective_permute",
[](const at::Tensor& input,
const std::shared_ptr<torch::lazy::Value>& token,
Expand Down
70 changes: 70 additions & 0 deletions torch_xla/csrc/ops/all_gather.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,25 @@ xla::Shape NodeOutputShape(const torch::lazy::Value& input,
return InferOutputShape({GetXlaShape(input), GetXlaShape(token)}, shape_fn);
}

xla::Shape NodeOutputShapeCoalesced(
c10::ArrayRef<torch::lazy::Value> inputs, const torch::lazy::Value& token,
int64_t dim, int64_t shard_count,
const std::vector<std::vector<int64_t>>& groups, bool pin_layout) {
auto shape_fn = [&](absl::Span<const xla::XlaOp> operands) -> xla::XlaOp {
AllGatherResultCoalesced result = BuildAllGatherCoalesced(
operands.subspan(0, operands.size() - 1), operands.back(), dim,
shard_count, groups, pin_layout);
result.result.emplace_back(result.token);
return xla::Tuple(operands[0].builder(), result.result);
};
std::vector<xla::Shape> input_shapes;
for (const auto& input : inputs) {
input_shapes.emplace_back(GetXlaShape(input));
}
input_shapes.emplace_back(GetXlaShape(token));
return InferOutputShape(input_shapes, shape_fn);
}

} // namespace

AllGather::AllGather(const torch::lazy::Value& input,
Expand All @@ -41,11 +60,35 @@ AllGather::AllGather(const torch::lazy::Value& input,
groups_(std::move(groups)),
pin_layout_(pin_layout) {}

AllGatherCoalesced::AllGatherCoalesced(c10::ArrayRef<torch::lazy::Value> inputs,
const torch::lazy::Value& token,
int64_t dim, int64_t shard_count,
std::vector<std::vector<int64_t>> groups,
bool pin_layout)
: XlaNode(xla_all_gather, GetOperandListWithToken(inputs, token),
[&]() {
return NodeOutputShapeCoalesced(inputs, token, dim, shard_count,
groups, pin_layout);
},
/*num_outputs=*/inputs.size() + 1,
torch::lazy::MHash(dim, shard_count, groups, pin_layout)),
dim_(dim),
shard_count_(shard_count),
groups_(std::move(groups)),
pin_layout_(pin_layout) {}

torch::lazy::NodePtr AllGather::Clone(torch::lazy::OpList operands) const {
return torch::lazy::MakeNode<AllGather>(operands.at(0), operands.at(1), dim_,
shard_count_, groups_, pin_layout_);
}

torch::lazy::NodePtr AllGatherCoalesced::Clone(
torch::lazy::OpList operands) const {
std::vector<torch::lazy::Value> inputs(operands.begin(), operands.end() - 1);
return torch::lazy::MakeNode<AllGatherCoalesced>(
inputs, operands.back(), dim_, shard_count_, groups_, pin_layout_);
}

XlaOpVector AllGather::Lower(LoweringContext* loctx) const {
xla::XlaOp input = loctx->GetOutputOp(operand(0));
xla::XlaOp token = loctx->GetOutputOp(operand(1));
Expand All @@ -54,6 +97,20 @@ XlaOpVector AllGather::Lower(LoweringContext* loctx) const {
return ReturnOps({result.result, result.token}, loctx);
}

XlaOpVector AllGatherCoalesced::Lower(LoweringContext* loctx) const {
auto& operand_list = operands();
std::vector<xla::XlaOp> inputs;
inputs.reserve(operand_list.size());
for (size_t i = 0; i + 1 < operand_list.size(); ++i) {
inputs.push_back(loctx->GetOutputOp(operand_list[i]));
}
xla::XlaOp token = loctx->GetOutputOp(operand_list.back());
AllGatherResultCoalesced result = BuildAllGatherCoalesced(
inputs, token, dim_, shard_count_, groups_, pin_layout_);
result.result.push_back(result.token);
return ReturnOps(result.result, loctx);
}

std::string AllGather::ToString() const {
std::stringstream ss;
ss << XlaNode::ToString() << ", dim=" << dim_
Expand All @@ -67,4 +124,17 @@ std::string AllGather::ToString() const {
return ss.str();
}

std::string AllGatherCoalesced::ToString() const {
std::stringstream ss;
ss << XlaNode::ToString() << ", dim=" << dim_
<< ", shard_count=" << shard_count_ << ", pin_layout=" << pin_layout_
<< ", groups=(";
for (size_t i = 0; i < groups_.size(); ++i) {
ss << (i == 0 ? "(" : ",(");
ss << absl::StrJoin(groups_[i], ", ") << ")";
}
ss << ")";
return ss.str();
}

} // namespace torch_xla
Loading