-
Notifications
You must be signed in to change notification settings - Fork 486
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
175 additions
and
162 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,175 +1,188 @@ | ||
"""Grouped matrix multiplication kernels for TPU written in Pallas.""" | ||
|
||
import logging | ||
import unittest | ||
|
||
from typing import Optional, Union, Callable | ||
|
||
import torch | ||
import torch_xla | ||
import numpy as np | ||
import torch_xla.core.xla_model as xm | ||
import torch_xla.experimental.megablox.gmm as g | ||
from torch_xla import runtime as xr | ||
from torch_xla._internal import tpu | ||
|
||
import numpy as np | ||
|
||
def jax_import_guard(): | ||
# Somehow, we need to grab the TPU before JAX locks it. Otherwise, any pt-xla TPU operations will hang. | ||
torch_xla._XLAC._init_computation_client() | ||
|
||
|
||
def _reference_gmm( | ||
lhs: np.array, | ||
rhs: np.array, | ||
group_sizes: np.array, | ||
preferred_element_type: np.dtype = np.float32, | ||
) -> np.array: | ||
|
||
start = 0 | ||
out = [] | ||
for i, size in enumerate(group_sizes): | ||
result = np.dot(lhs[start:start + size, :], rhs[i, :, :]) | ||
|
||
result = result.astype(preferred_element_type) | ||
out.append(result) | ||
start += group_sizes[i] | ||
return np.array(np.concatenate(out, axis=0)) | ||
|
||
|
||
def _group_sizes_strategy(m: int, num_groups: int) -> torch.Tensor: | ||
# Randomly sample the ends of the groups in the m-dimension. Let the fuzzer | ||
# sample with replacement so that it's possible to get zero-sized groups. Get | ||
# 'num_groups - 1' run ends. The final group will end at 'm'. | ||
ends_no_final = np.sort( | ||
np.array( | ||
[np.random.randint(low=0, high=m) for _ in range(num_groups - 1)], | ||
dtype=np.int32, | ||
),) | ||
ends = np.concatenate([ends_no_final, np.array([m], dtype=np.int32)]) | ||
|
||
# Calculate the run starts by shifting ends 1 to the right. The first run | ||
# starts at zero. | ||
starts = np.concatenate([np.zeros(1, dtype=np.int32), ends_no_final]) | ||
return torch.from_numpy(ends - starts).to(torch.int32) | ||
|
||
|
||
def _trace_kernel_payload(lhs: torch.Tensor, rhs: torch.Tensor, | ||
group_sizes: torch.Tensor): | ||
if xr.device_type() == 'TPU': | ||
from torch_xla.experimental.custom_kernel import jax_import_guard | ||
jax_import_guard() | ||
import jax | ||
from jax.experimental.pallas.ops.tpu.megablox import gmm | ||
from torch_xla.experimental.custom_kernel import trace_pallas | ||
payload, _ = trace_pallas(gmm, lhs, rhs, group_sizes) | ||
|
||
return payload | ||
|
||
|
||
def _tolerances(lhs_dtype: torch.dtype, rhs_dtype: torch.dtype, | ||
out_dtype: torch.dtype) -> tuple[float, float]: | ||
if (lhs_dtype == torch.bfloat16 or rhs_dtype == torch.bfloat16 or | ||
out_dtype == torch.bfloat16): | ||
return 1e-3, 1e-2 # atol, rtol | ||
return 1e-4, 1e-2 # atol, rtol | ||
|
||
|
||
LutFn = Callable[[int, int, int], Optional[tuple[int, int, int]]] | ||
|
||
|
||
def gmm( | ||
lhs: torch.Tensor, | ||
rhs: torch.Tensor, | ||
group_sizes: torch.Tensor, | ||
preferred_element_type: torch.dtype = torch.float32, | ||
tiling: Optional[Union[tuple[int, int, int], LutFn]] = (128, 128, 128), | ||
group_offset: Optional[torch.Tensor] = None, | ||
existing_out: Optional[torch.Tensor] = None, | ||
transpose_rhs: bool = False, | ||
interpret: bool = False, | ||
): | ||
payload = _trace_kernel_payload(lhs, rhs, group_sizes) | ||
out = g.gmm(lhs, rhs, group_sizes, payload, preferred_element_type, tiling, | ||
group_offset, existing_out, transpose_rhs, interpret) | ||
return out | ||
|
||
|
||
def _init_test_cases(): | ||
tests_cases = [] | ||
tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 128, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 256, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 128, | ||
'k': 256, | ||
'n': 128, | ||
'num_groups': 8 | ||
}) | ||
tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 512, | ||
'k': 128, | ||
'n': 256, | ||
'num_groups': 2 | ||
}) | ||
tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 128, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 256, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 128, | ||
'k': 256, | ||
'n': 128, | ||
'num_groups': 8 | ||
}) | ||
tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 512, | ||
'k': 128, | ||
'n': 256, | ||
'num_groups': 2 | ||
}) | ||
return tests_cases | ||
import jax.numpy as jnp | ||
from jax.experimental import pallas as pl | ||
|
||
|
||
class PallasTest(unittest.TestCase): | ||
|
||
def _reference_gmm( | ||
self, | ||
lhs: np.array, | ||
rhs: np.array, | ||
group_sizes: np.array, | ||
preferred_element_type: np.dtype = np.float32, | ||
) -> np.array: | ||
|
||
start = 0 | ||
out = [] | ||
for i, size in enumerate(group_sizes): | ||
result = np.dot(lhs[start:start + size, :], rhs[i, :, :]) | ||
|
||
result = result.astype(preferred_element_type) | ||
out.append(result) | ||
start += group_sizes[i] | ||
return np.array(np.concatenate(out, axis=0)) | ||
|
||
def _group_sizes_strategy(self, m: int, num_groups: int) -> torch.Tensor: | ||
# Randomly sample the ends of the groups in the m-dimension. Let the fuzzer | ||
# sample with replacement so that it's possible to get zero-sized groups. Get | ||
# 'num_groups - 1' run ends. The final group will end at 'm'. | ||
ends_no_final = np.sort( | ||
np.array( | ||
[np.random.randint(low=0, high=m) for _ in range(num_groups - 1)], | ||
dtype=np.int32, | ||
),) | ||
ends = np.concatenate([ends_no_final, np.array([m], dtype=np.int32)]) | ||
|
||
# Calculate the run starts by shifting ends 1 to the right. The first run | ||
# starts at zero. | ||
starts = np.concatenate([np.zeros(1, dtype=np.int32), ends_no_final]) | ||
return torch.from_numpy(ends - starts).to(torch.int32) | ||
|
||
def _trace_kernel_payload(self, lhs: torch.Tensor, rhs: torch.Tensor, | ||
group_sizes: torch.Tensor): | ||
import jax | ||
from jax.experimental.pallas.ops.tpu.megablox import gmm | ||
from torch_xla.experimental.custom_kernel import trace_pallas | ||
payload, _ = trace_pallas(gmm, lhs, rhs, group_sizes) | ||
|
||
return payload | ||
|
||
def _tolerances(self, lhs_dtype: torch.dtype, rhs_dtype: torch.dtype, | ||
out_dtype: torch.dtype) -> tuple[float, float]: | ||
if (lhs_dtype == torch.bfloat16 or rhs_dtype == torch.bfloat16 or | ||
out_dtype == torch.bfloat16): | ||
return 1e-3, 1e-2 # atol, rtol | ||
return 1e-4, 1e-2 # atol, rtol | ||
|
||
LutFn = Callable[[int, int, int], Optional[tuple[int, int, int]]] | ||
|
||
def gmm( | ||
self, | ||
lhs: torch.Tensor, | ||
rhs: torch.Tensor, | ||
group_sizes: torch.Tensor, | ||
preferred_element_type: torch.dtype = torch.float32, | ||
tiling: Optional[Union[tuple[int, int, int], LutFn]] = (128, 128, 128), | ||
group_offset: Optional[torch.Tensor] = None, | ||
existing_out: Optional[torch.Tensor] = None, | ||
transpose_rhs: bool = False, | ||
interpret: bool = False, | ||
): | ||
payload = self._trace_kernel_payload(lhs, rhs, group_sizes) | ||
out = g.gmm(lhs, rhs, group_sizes, payload, preferred_element_type, tiling, | ||
group_offset, existing_out, transpose_rhs, interpret) | ||
return out | ||
|
||
def _init_test_cases(self): | ||
self.tests_cases = [] | ||
self.tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 128, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 256, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 128, | ||
'k': 256, | ||
'n': 128, | ||
'num_groups': 8 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 512, | ||
'k': 128, | ||
'n': 256, | ||
'num_groups': 2 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 128, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 256, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 128, | ||
'k': 256, | ||
'n': 128, | ||
'num_groups': 8 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 512, | ||
'k': 128, | ||
'n': 256, | ||
'num_groups': 2 | ||
}) | ||
|
||
@unittest.skipIf(xr.device_type() != 'TPU', "This test only works on TPU.") | ||
def test_gmm(self): | ||
self._init_test_cases() | ||
for test_case in self.tests_cases: | ||
print("Test Case: ", test_case) | ||
num_groups = test_case['num_groups'] | ||
k = test_case['k'] | ||
m = test_case['m'] | ||
n = test_case['n'] | ||
lhs_dtype = rhs_dtype = test_case['dtype'] | ||
out_dtype = torch.float32 | ||
|
||
lhs = torch.rand(m, k, dtype=lhs_dtype).to('xla') | ||
rhs = torch.rand(num_groups, k, n, dtype=rhs_dtype).to('xla') | ||
group_sizes = self._group_sizes_strategy(m=m, num_groups=num_groups) | ||
out = self.gmm(lhs, rhs, group_sizes) | ||
|
||
ref_out = self._reference_gmm( | ||
lhs.to('cpu').float().numpy(), | ||
rhs.to('cpu').float().numpy(), group_sizes.numpy()) | ||
|
||
atol, rtol = self._tolerances(lhs_dtype, rhs_dtype, out_dtype) | ||
np.testing.assert_allclose( | ||
ref_out, np.array(out[0].to('cpu')), rtol=rtol, atol=atol) | ||
|
||
|
||
if __name__ == '__main__': | ||
tests_cases = _init_test_cases() | ||
seed = 421 | ||
|
||
for test_case in tests_cases: | ||
print("Test Case: ", test_case) | ||
num_groups = test_case['num_groups'] | ||
k = test_case['k'] | ||
m = test_case['m'] | ||
n = test_case['n'] | ||
lhs_dtype = rhs_dtype = test_case['dtype'] | ||
out_dtype = torch.float32 | ||
|
||
torch.random.manual_seed(seed) | ||
lhs = torch.rand(m, k, dtype=lhs_dtype).to('xla') | ||
rhs = torch.rand(num_groups, k, n, dtype=rhs_dtype).to('xla') | ||
group_sizes = _group_sizes_strategy(m=m, num_groups=num_groups) | ||
out = gmm(lhs, rhs, group_sizes) | ||
|
||
ref_out = _reference_gmm( | ||
lhs.to('cpu').float().numpy(), | ||
rhs.to('cpu').float().numpy(), group_sizes.numpy()) | ||
|
||
atol, rtol = _tolerances(lhs_dtype, rhs_dtype, out_dtype) | ||
np.testing.assert_allclose( | ||
ref_out, np.array(out[0].to('cpu')), rtol=rtol, atol=atol) | ||
logging.getLogger().setLevel(logging.INFO) | ||
torch.set_default_dtype(torch.float32) | ||
torch.manual_seed(42) | ||
torch_xla._XLAC._xla_set_use_full_mat_mul_precision( | ||
use_full_mat_mul_precision=True) | ||
test = unittest.main() | ||
sys.exit(0 if test.result.wasSuccessful() else 1) |