Skip to content

Commit

Permalink
Itertool recipe additions (gh-127483)
Browse files Browse the repository at this point in the history
  • Loading branch information
rhettinger authored Dec 4, 2024
1 parent 0f91078 commit 7f882c8
Showing 1 changed file with 37 additions and 0 deletions.
37 changes: 37 additions & 0 deletions Doc/library/itertools.rst
Original file line number Diff line number Diff line change
Expand Up @@ -877,6 +877,11 @@ and :term:`generators <generator>` which incur interpreter overhead.
"Returns the sequence elements n times."
return chain.from_iterable(repeat(tuple(iterable), n))

def loops(n):
"Loop n times. Like range(n) but without creating integers."
# for _ in loops(100): ...
return repeat(None, n)

def tail(n, iterable):
"Return an iterator over the last n items."
# tail(3, 'ABCDEFG') → E F G
Expand Down Expand Up @@ -1099,6 +1104,11 @@ The following recipes have a more mathematical flavor:
data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p)))
yield from iter_index(data, 1, start=3)

def is_prime(n):
"Return True if n is prime."
# is_prime(1_000_000_000_000_403) → True
return n > 1 and all(n % p for p in sieve(math.isqrt(n) + 1))

def factor(n):
"Prime factors of n."
# factor(99) → 3 3 11
Expand Down Expand Up @@ -1202,6 +1212,16 @@ The following recipes have a more mathematical flavor:
[0, 2, 4, 6]


>>> for _ in loops(5):
... print('hi')
...
hi
hi
hi
hi
hi


>>> list(tail(3, 'ABCDEFG'))
['E', 'F', 'G']
>>> # Verify the input is consumed greedily
Expand Down Expand Up @@ -1475,6 +1495,23 @@ The following recipes have a more mathematical flavor:
True


>>> small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
>>> list(filter(is_prime, range(-100, 100))) == small_primes
True
>>> carmichael = {561, 1105, 1729, 2465, 2821, 6601, 8911} # https://oeis.org/A002997
>>> any(map(is_prime, carmichael))
False
>>> # https://www.wolframalpha.com/input?i=is+128884753939+prime
>>> is_prime(128_884_753_939) # large prime
True
>>> is_prime(999953 * 999983) # large semiprime
False
>>> is_prime(1_000_000_000_000_007) # factor() example
False
>>> is_prime(1_000_000_000_000_403) # factor() example
True


>>> list(factor(99)) # Code example 1
[3, 3, 11]
>>> list(factor(1_000_000_000_000_007)) # Code example 2
Expand Down

0 comments on commit 7f882c8

Please sign in to comment.