Sample from posterior distributions using the No U-turn Sampler (NUTS). For details see the original NUTS paper and the more recent introduction.
This crate was developed as a faster replacement of the sampler in PyMC, to be used with the new numba backend of PyTensor. The python wrapper for this sampler is nutpie.
use nuts_rs::{CpuLogpFunc, CpuMath, LogpError, DiagGradNutsSettings, Chain, SampleStats,
Settings};
use thiserror::Error;
use rand::thread_rng;
// Define a function that computes the unnormalized posterior density
// and its gradient.
#[derive(Debug)]
struct PosteriorDensity {}
// The density might fail in a recoverable or non-recoverable manner...
#[derive(Debug, Error)]
enum PosteriorLogpError {}
impl LogpError for PosteriorLogpError {
fn is_recoverable(&self) -> bool { false }
}
impl CpuLogpFunc for PosteriorDensity {
type LogpError = PosteriorLogpError;
// Only used for transforming adaptation.
type TransformParams = ();
// We define a 10 dimensional normal distribution
fn dim(&self) -> usize { 10 }
// The normal likelihood with mean 3 and its gradient.
fn logp(&mut self, position: &[f64], grad: &mut [f64]) -> Result<f64, Self::LogpError> {
let mu = 3f64;
let logp = position
.iter()
.copied()
.zip(grad.iter_mut())
.map(|(x, grad)| {
let diff = x - mu;
*grad = -diff;
-diff * diff / 2f64
})
.sum();
return Ok(logp)
}
}
// We get the default sampler arguments
let mut settings = DiagGradNutsSettings::default();
// and modify as we like
settings.num_tune = 1000;
settings.maxdepth = 3; // small value just for testing...
// We instanciate our posterior density function
let logp_func = PosteriorDensity {};
let math = CpuMath::new(logp_func);
let chain = 0;
let mut rng = thread_rng();
let mut sampler = settings.new_chain(0, math, &mut rng);
// Set to some initial position and start drawing samples.
sampler.set_position(&vec![0f64; 10]).expect("Unrecoverable error during init");
let mut trace = vec![]; // Collection of all draws
for _ in 0..2000 {
let (draw, info) = sampler.draw().expect("Unrecoverable error during sampling");
trace.push(draw);
}
Users can also implement the Model
trait for more control and parallel sampling.
This crate mostly follows the implementation of NUTS in Stan and PyMC, only tuning of mass matrix and step size differs somewhat.