Skip to content

Commit

Permalink
Merge branch 'main' into perf/cache-array-keys
Browse files Browse the repository at this point in the history
  • Loading branch information
dcherian authored Dec 18, 2024
2 parents 3d15d3d + 8afed74 commit f1ef905
Show file tree
Hide file tree
Showing 3 changed files with 19 additions and 17 deletions.
4 changes: 4 additions & 0 deletions doc/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,10 @@ Internal Changes
~~~~~~~~~~~~~~~~
- Move non-CF related ``ensure_dtype_not_object`` from conventions to backends (:pull:`9828`).
By `Kai Mühlbauer <https://github.com/kmuehlbauer>`_.
- Move handling of scalar datetimes into ``_possibly_convert_objects``
within ``as_compatible_data``. This is consistent with how lists of these objects
will be converted (:pull:`9900`).
By `Kai Mühlbauer <https://github.com/kmuehlbauer>`_.

.. _whats-new.2024.11.0:

Expand Down
22 changes: 10 additions & 12 deletions xarray/core/variable.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
import numbers
import warnings
from collections.abc import Callable, Hashable, Mapping, Sequence
from datetime import timedelta
from functools import partial
from types import EllipsisType
from typing import TYPE_CHECKING, Any, NoReturn, cast
Expand Down Expand Up @@ -232,10 +231,16 @@ def _as_nanosecond_precision(data):

def _possibly_convert_objects(values):
"""Convert arrays of datetime.datetime and datetime.timedelta objects into
datetime64 and timedelta64, according to the pandas convention. For the time
being, convert any non-nanosecond precision DatetimeIndex or TimedeltaIndex
objects to nanosecond precision. While pandas is relaxing this in version
2.0.0, in xarray we will need to make sure we are ready to handle
datetime64 and timedelta64, according to the pandas convention.
* datetime.datetime
* datetime.timedelta
* pd.Timestamp
* pd.Timedelta
For the time being, convert any non-nanosecond precision DatetimeIndex or
TimedeltaIndex objects to nanosecond precision. While pandas is relaxing this
in version 2.0.0, in xarray we will need to make sure we are ready to handle
non-nanosecond precision datetimes or timedeltas in our code before allowing
such values to pass through unchanged. Converting to nanosecond precision
through pandas.Series objects ensures that datetimes and timedeltas are
Expand Down Expand Up @@ -305,13 +310,6 @@ def convert_non_numpy_type(data):
if isinstance(data, tuple):
data = utils.to_0d_object_array(data)

if isinstance(data, pd.Timestamp):
# TODO: convert, handle datetime objects, too
data = np.datetime64(data.value, "ns")

if isinstance(data, timedelta):
data = np.timedelta64(getattr(data, "value", data), "ns")

# we don't want nested self-described arrays
if isinstance(data, pd.Series | pd.DataFrame):
pandas_data = data.values
Expand Down
10 changes: 5 additions & 5 deletions xarray/tests/test_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,27 +90,27 @@ def text_in_fig() -> set[str]:
"""
Return the set of all text in the figure
"""
return {t.get_text() for t in plt.gcf().findobj(mpl.text.Text)} # type: ignore[attr-defined] # mpl error?
return {t.get_text() for t in plt.gcf().findobj(mpl.text.Text)}


def find_possible_colorbars() -> list[mpl.collections.QuadMesh]:
# nb. this function also matches meshes from pcolormesh
return plt.gcf().findobj(mpl.collections.QuadMesh) # type: ignore[return-value] # mpl error?
return plt.gcf().findobj(mpl.collections.QuadMesh)


def substring_in_axes(substring: str, ax: mpl.axes.Axes) -> bool:
"""
Return True if a substring is found anywhere in an axes
"""
alltxt: set[str] = {t.get_text() for t in ax.findobj(mpl.text.Text)} # type: ignore[attr-defined] # mpl error?
alltxt: set[str] = {t.get_text() for t in ax.findobj(mpl.text.Text)}
return any(substring in txt for txt in alltxt)


def substring_not_in_axes(substring: str, ax: mpl.axes.Axes) -> bool:
"""
Return True if a substring is not found anywhere in an axes
"""
alltxt: set[str] = {t.get_text() for t in ax.findobj(mpl.text.Text)} # type: ignore[attr-defined] # mpl error?
alltxt: set[str] = {t.get_text() for t in ax.findobj(mpl.text.Text)}
check = [(substring not in txt) for txt in alltxt]
return all(check)

Expand All @@ -122,7 +122,7 @@ def property_in_axes_text(
Return True if the specified text in an axes
has the property assigned to property_str
"""
alltxt: list[mpl.text.Text] = ax.findobj(mpl.text.Text) # type: ignore[assignment]
alltxt: list[mpl.text.Text] = ax.findobj(mpl.text.Text)
return all(
plt.getp(t, property) == property_str
for t in alltxt
Expand Down

0 comments on commit f1ef905

Please sign in to comment.