Builds on codebase for Schmidtke et al. "Unsupervised Human Pose Estimation through Transforming Shape Templates."
-
In
configs/variables.py
, fill outTO DO
elements. -
Download Human3.6m dataset. See
Dataset access
section for details. -
In
code/preprocessing/create_data_dict.py
andcode/preprocessing/get_frames.py
update the indexing to match the file structure of the downloaded video files (see TO DO instructions in file for detail). -
Set up environment:
conda create -n poseestimation python=3.7
conda install pytorch torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
conda install -c anaconda notebook
conda install -c conda-forge matplotlib
pip install -r requirements.txt
Request authors of Human3.6M dataset for access to dataset.
Once access is granted, the data should be structures as follows in the data/
folder.
data
-- S1
-- videos
--mp4 files
-- S5
-- videos
-- S6
-- videos
...
Once the data has been downloaded and programming environment is set up, preprocess the data.
cd code/preprocessing
python get_frames.py
python create_data_dict.py
python collect_frames_create_dirs.py
python collect_frames.py
python create_preprocessed_to_orig_mapping.py
First, change directory to code/train
: cd code/train
Baseline: python train_baseline.py -config ../../configs/baseline.yaml
+ MSE: python train_mse.py -config ../../configs/mse.yaml
New template: python train_baseline.py -config ../../configs/natural.yaml
+ MSE, new template: python train_mse.py -config ../../configs/mse_natural.yaml
+ MSE, new template, flip augment: python train_mse_flipaugment.py -config ../../configs/mse_natural_flipaugment.yaml
+ MSE, new template, flip augment, coarse-to-fine: python train_mse_flipaugment_twostepwarp.py -config ../../configs/mse_natural_flipaugment_twostepwarp.yaml
Constrained: python train_constrained.py -config ../../configs/constrained.yaml
@InProceedings{Yoo_2023_ICCV,
author = {Yoo, Nobline and Russakovsky, Olga},
title = {Efficient, Self-Supervised Human Pose Estimation with Inductive Prior Tuning},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
month = {October},
year = {2023},
pages = {3271-3280}
}