Skip to content

pretidav/stat_analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

stat_analysis:

This repository contains several statistical tools useful for scientific computations.

installation

pip install git+https://github.com/pretidav/stat_analysis

pfit

Is an linear (in the parameters) fitting script which takes into account statistical uncertainties on y-axis. Chi^2 is used a likelihood function, minimized analytically.

Once requirements are installed with

pip install requirements

For unit testing the code can be executed as

python pfit.py 

Import the module as

from stat_analysis.pfit import pfit

For common usage, class pfit can be customized with the following arguments:

x          # input data in list or np.array format 
y          # input data in list or np.array format
dy         # [Optional] input data in list or np.array format, if missing error is ignored (i.e. =1)
ndeg=1     # degree of polynomial, i.e. 0 is a constant fit, 1 is a*x+b and so on.
kconst=[2] # [Optional] a list of coefficients, starting from the highest to the lowest degree. (e.g. ndeg=3, kconst=[2,3] is a*x**3+b*x**2+2*x+3) these coefficients are kept fix in the fit. 
  • .log(): fit parameters with uncertainties, reduced chi2, and covariance matrix are displayed.
==================== Fit Log ====================
 k       = [4.98881479 1.89398851 6.6610509 ]
dk       = [ 1.25188083  9.53787807 10.14975134]
t        = [3.98505565 0.19857546 0.65627725]
p-values = [0.00528968 0.84823908 0.53261758]
chi2/dof = 0.0007074425784127696
dof      = 7
cov      = 
[[  1.56720562 -11.82348128  11.5408929 ]
 [-11.82348128  90.971118   -91.18678554]
 [ 11.5408929  -91.18678554 103.01745234]]
pred   = 631.1415143152262
dpred  = 58.04015781775017
  • .plot(): plot the data and fit with error band. Optional parameters are xlabel,ylabel and savefile. if nor specified the plot will not be saved.

alt text

  • .predict(): plot the data and fit with error band and the predicted point x. Optional parameters are xlabel,ylabel and savefile. if not specified the plot will not be saved.

alt text

example usage:

x = np.linspace(0,10,num=10)
y = 5*x**2+ 2*x + 5 + 2*np.random.rand(len(x))
dy = 100*np.random.rand(len(x))

ff = pfit(x=x,y=y,dy=dy,ndeg=2)
ff.fit()
ff.plot(xlabel='x',ylabel='y',savefile='../fig/quad.png')
plt.clf()
ff.predict(x=11,xlabel='x',ylabel='y',savefile='../fig/quad_pred.png')
ff.log()

nlfit

This routine allows to perform non-linear fits with errors on both axis. If errors are not provided they are ignored. Input function has to be passed in this form (for instance):

Once requirements are installed with

pip install requirements

For unit testing the code can be executed as

python nlfit.py 

Import the module as

from stat_analysis.nlfit import nlfit

For common usage, class pfit can be customized with the following arguments:

f  # input function to be fitted (see below) 
x  # input data in list or np.array format
y  # input data in list or np.array format
dx # [Optional] input data in list or np.array format
dy # [Optional] input data in list or np.array format
k0 # parameters initial values for the optimizer e.g. [0.,0., ... ]. Notice that the length of this vector *must* match the number of parameter of f function.  

The input function f should be of this form:

import numpy as np
    def f(B, x):
        return np.exp(B[0]*x) + B[1]*np.sin(x) + B[2] 
  • .log(): fit parameters with uncertainties, R^2, and covariance matrix are displayed.
==================== Fit Log ====================
 k       = [0.20230562 0.91546002 5.48977518]
dk       = [0.0030456  0.06418912 0.06665966]
t        = [66.42561823 14.26191952 82.35528149]
p-values = [0.00000000e+00 6.87618851e-11 0.00000000e+00]
R**2     = 5.540221043876636
dof      = 17
cov      = 
[[ 9.27565727e-06 -4.12808332e-05 -1.41792933e-04]
 [-4.12808332e-05  4.12024270e-03 -6.44158588e-05]
 [-1.41792933e-04 -6.44158588e-05  4.44351047e-03]]
 k       = [13.05072629]
dk       = [0.24797352]
=================================================
  • .plot(): plot the data and fit with error band. Optional parameters are xlabel,ylabel and savefile. if nor specified the plot will not be saved.

alt text

  • .predict(): plot the data and fit with error band and the predicted point x. Optional parameters are xlabel,ylabel and savefile. if not specified the plot will not be saved.

alt text

example usage:

    def f(B, x):
        return np.exp(B[0]*x) + B[1]*np.sin(x) + B[2] 

    x = np.linspace(0,10,num=20)
    y = f([0.2,1,5],x) + 1*np.random.rand(len(x))
    dy = 1*np.random.rand(len(x))
    dx = 0.5*np.random.rand(len(x))

    ff = nlfit(func=f,x=x,y=y,dx=dx,dy=dy,k0=[0.,0.,0.])
    ff.fit()
    ff.plot(savefile='../fig/nonlin.png')
    plt.clf()
    ff.predict(x=10.5,xlabel='x',ylabel='y',savefile='../fig/nonlin_pred.png')
    ff.log()

bootstrap

This routine allows for two kind of bootstrap resampling methods.

  • bootstrap: usual bootstrap with repetition with possibility of data blocking.
  • synt_bootstrap: syntetic bootstrap data generated stating from a vector of parameters with a given covariance.

The modules can be imported as

from stat_analysis.bootstrap import bootstrap
BS=bootstrap(k=data,Nb=10000000)
b=BS.sample()
print(np.mean(b,axis=0))
print(np.std(b,axis=0))

or

from stat_analysis.bootstrap import synt_bootstrap

k = [2,3]
cov = [[0.3,0.5],[0.5,2]]
BS=synt_bootstrap(k=k,Nb=10000000,cov=cov)
b=BS.sample()
print(np.cov(b.T))
print(np.mean(b,axis=0))

comparator

This routine allows for the comparison of two arrays of data. A pipeline of statistical tests, including Welch's t-test, Student's t-test and Kolmogorov-Smirnov test are included to distinguish with a given confidence if the data are coming from the same distribution or not.

from stat_analysis.comparator import comparator
a = [30.02,29.99,30.11,29.97,30.01,29.99]
b = [29.89,29.93,29.72,29.98,30.02,29.98]
aa = comparator(A=a,B=b,normaltest=False)
bb = aa.compare()
aa.plot(bins=100)
print(bb)

About

Scientific data analysis tools

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages