- Python >= 3.9 (Recommend to use Anaconda or Miniconda)
- PyTorch >= 1.13.0+cu11.7
conda create -n FORA python=3.9
conda activate FORA
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
- To sample for single ImageNet class with conditional guidance strength 1.5, with caching frequency 3, with output image size 512 and with DDIM steps 250
python src/sample.py --save-cache 'boost_infer_static' --cache-subtype 'default' --cache-threshold '3' --image-size 512 --seed 1 --cfg-scale 1.5 --num-sampling-steps 250
- To sample for entire ImageNetdataset and save the output in samples folder
torchrun --nnodes=1 --nproc_per_node=4 src/sample_ddp.py --num-fid-samples 50000 --save-cache 'boost_infer_static' --cache-subtype 'default' --cache-threshold '3' --image-size 256 --per-proc-batch-size 4 --sample-dir 'samples' --cfg-scale 1.5 --num-sampling-steps 250
Coming up!!
- Thanks to DiT for their great work and codebase upon which we build FORA.
- Thanks to PixArt-alpha for their wonderful work and contribution