Skip to content

Commit

Permalink
Add joint probability distribution calculations
Browse files Browse the repository at this point in the history
  • Loading branch information
weirdwizardthomas committed Mar 30, 2022
1 parent b4dd390 commit da54a2f
Showing 1 changed file with 107 additions and 0 deletions.
107 changes: 107 additions & 0 deletions JointProbabilityDistribution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import numpy as np
from scipy.stats.contingency import margins


def entropy(array):
"""
Calculates the entropy of a discrete random variable
:param array: probabilities of the discrete random variable
:return: Entropy of the discrete random variable described by array
"""
return -1 * np.sum(array * np.log2(array))


def relative_entropy(p, q):
"""
Calculates the Kullback-Leibler distance between two discrete random variables p, q D(p||q)
:param p: discrete random variable
:param q: discrete random variable
:return: Kullback-Leibler distance D(p||q)
"""
logarithms = np.log2(p / q, out=np.zeros_like(p), where=(p != 0))
return np.sum(np.multiply(p, logarithms))


class JointProbabilityDistribution:
def __init__(self, matrix):
self.matrix = matrix

@property
def all(self):
marginal_distributions = self.marginal_distributions
conditional_entropy = self.conditional_entropy
return {
'marginal distribution x': marginal_distributions[0],
'marginal distribution y': marginal_distributions[1],
'joined entropy': self.joined_entropy,
'marginal entropy x': entropy(marginal_distributions[0]),
'marginal entropy y': entropy(marginal_distributions[1]),
'conditional entropy x|y': conditional_entropy[0],
'conditional entropy y|x': conditional_entropy[1],
'relative entropy x||y': self.relative_entropy('x'),
'relative entropy y||x': self.relative_entropy('y'),
'joined distribution': self.matrix
}

@property
def marginal_distributions(self):
x, y = margins(self.matrix)
return x.T.flatten(), y.flatten()

@property
def joined_entropy(self):
logarithms = np.log2(self.matrix, out=np.zeros_like(self.matrix), where=(self.matrix != 0))
products = np.multiply(self.matrix, logarithms)
return -1 * np.sum(products)

@property
def conditional_entropy(self):
return self.__conditional_entropy(axis=0), self.__conditional_entropy(axis=1)

def relative_entropy(self, first='x'):
marginal_distributions = self.marginal_distributions

if first == 'x':
p, q = marginal_distributions
elif first == 'y':
q, p = marginal_distributions
else:
raise ValueError('Permitted values: {x,y}')
return relative_entropy(p, q)

@property
def mutual_information(self):
x, y = self.marginal_distributions
p = self.matrix
q = np.multiply(x, y)
return relative_entropy(p, q)

def __conditional_entropy(self, axis=0):
axis_a, axis_b = (0, 1) if axis == 0 else (1, 0)

p_b = self.marginal_distributions[axis_a]

result = 0

for i in range(self.matrix.shape[axis_a]):
for j in range(self.matrix.shape[axis_b]):
if self.matrix[i, j] == 0:
continue
p_xy = self.matrix[i, j]
p_a_given_b = p_xy / p_b[j]
result += p_xy * np.log2(p_a_given_b)

return -1 * result


if __name__ == '__main__':
matrix = np.matrix([
[1 / 8, 1 / 16, 1 / 32, 1 / 32],
[1 / 16, 1 / 8, 1 / 32, 1 / 32],
[1 / 16, 1 / 16, 1 / 16, 1 / 16],
[1 / 4, 0, 0, 0],
])
jointProbabilityDistribution = JointProbabilityDistribution(matrix)

for key, value in jointProbabilityDistribution.all.items():
print(f'{key}: {value}')

0 comments on commit da54a2f

Please sign in to comment.