This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resources. Other awesome lists can be found in this list.
##Table of Contents
- Miscellaneous
- Interview Resources
- Artificial Intelligence
- Genetic Algorithms
- Statistics
- Useful Blogs
- Resources on Quora
- Resources on Kaggle
- Cheat Sheets
- Classification
- Linear Regression
- Logistic Regression
- Model Validation using Resampling
- Deep Learning
- Natural Language Processing
- Computer Vision
- Support Vector Machine
- Reinforcement Learning
- Decision Trees
- Random Forest / Bagging
- Boosting
- Ensembles
- Stacking Models
- VC Dimension
- Bayesian Machine Learning
- Semi Supervised Learning
- Optimizations
<a name="boot" />
- Neural Machine Translation
- [Theano](https://en.wikipedia.org/wiki/Theano_(software))
- [Website](http://deeplearning.net/software/theano/)
- [Theano Introduction](http://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/)
- [Theano Tutorial](http://outlace.com/Beginner-Tutorial-Theano/)
- [Good Theano Tutorial](http://deeplearning.net/software/theano/tutorial/)
- [Logistic Regression using Theano for classifying digits](http://deeplearning.net/tutorial/logreg.html#logreg)
- [MLP using Theano](http://deeplearning.net/tutorial/mlp.html#mlp)
- [CNN using Theano](http://deeplearning.net/tutorial/lenet.html#lenet)
- [RNNs using Theano](http://deeplearning.net/tutorial/rnnslu.html#rnnslu)
- [LSTM for Sentiment Analysis in Theano](http://deeplearning.net/tutorial/lstm.html#lstm)
- [RBM using Theano](http://deeplearning.net/tutorial/rbm.html#rbm)
- [DBNs using Theano](http://deeplearning.net/tutorial/DBN.html#dbn)
- [All Codes](https://github.com/lisa-lab/DeepLearningTutorials)
- [Torch](http://torch.ch/)
- [Torch ML Tutorial](http://code.madbits.com/wiki/doku.php), [Code](https://github.com/torch/tutorials)
- [Intro to Torch](http://ml.informatik.uni-freiburg.de/_media/teaching/ws1415/presentation_dl_lect3.pdf)
- [Learning Torch GitHub Repo](https://github.com/chetannaik/learning_torch)
- [Awesome-Torch (Repository on GitHub)](https://github.com/carpedm20/awesome-torch)
- [Machine Learning using Torch Oxford Univ](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/), [Code](https://github.com/oxford-cs-ml-2015)
- [Torch Internals Overview](https://apaszke.github.io/torch-internals.html)
- [Torch Cheatsheet](https://github.com/torch/torch7/wiki/Cheatsheet)
- [Understanding Natural Language with Deep Neural Networks Using Torch](http://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
- Caffe
- [Deep Learning for Computer Vision with Caffe and cuDNN](http://devblogs.nvidia.com/parallelforall/deep-learning-computer-vision-caffe-cudnn/)
- TensorFlow
- [Website](http://tensorflow.org/)
- [Learning TensorFlow GitHub Repo](https://github.com/chetannaik/learning_tensorflow)
- [Benchmark TensorFlow GitHub](https://github.com/soumith/convnet-benchmarks/issues/66)
-
Text Clustering
-
Text Classification
-
Kaggle Tutorial Bag of Words and Word vectors, Part 2, Part 3
- xgboost
- AdaBoost