Skip to content

penggaogu/python_for_data_analysis_3rd_study_note

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

利用Python进行数据分析》第3版

利用Python进行数据分析》第2版

各章导读视频:https://www.bilibili.com/video/BV1pC4y117Bh/

在简书上阅读: https://www.jianshu.com/p/16e04213aa91

第三版多了41页内容,Pandas升级为1.4.0、Python升级为3.10。第三版最大的变化是紧贴Pandas升级,主要是新增了方法和特性的内容。另外,第三版有作者的在线开源电子版了,GitHub地址

第三版目录略有调整,不如第二版和第一版的变化大:

  • 第4章NumPy基础新增了生成伪随机数;
  • 第7章数据清洗新增了扩展数据类型和分类数据,实际是把第二版中第12章的内容放到新版第7章里了;
  • 第11章时间序列新增了分组时间重采样。

曾经不止一次听别人抱怨,Pandas的知识点分散、零碎、不便于记忆。在细节上,作者这次在新版中摒弃了许多容易造成记忆混乱的用法。比如,用axis = "columns"替代axis = 1,简写方式破坏了代码的可读性,作者修改了许多类似的编程细节。新版对初学者更为友好了!

在简书上阅读: https://www.jianshu.com/p/04d180d90a3f

下载本书代码,GitHub地址(建议把代码下载下来之后,安装好Anaconda,在目录文件夹中用Jupyter notebook打开)。

本书是2017年10月20号正式出版的,和第1版的不同之处有:

  • 包括Python教程内的所有代码升级为Python 3.6(第1版使用的是Python 2.7)
  • 更新了Anaconda和其它包的Python安装方法
  • 更新了Pandas为2017最新版
  • 新增了一章,关于更高级的Pandas工具,外加一些tips
  • 简要介绍了使用StatsModels和scikit-learn

对有些内容进行了重新排版。最大的改变是把第1版附录中的Python教程,单列成了现在的第2章和第3章,并且进行了扩充。



【Python数据分析群】,拉你入群 AI科技论谈·分享AI新知

About

《利用Python进行数据分析·第3版》学习笔记

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published