Spring Cloud Vault Config provides client-side support for externalized configuration in a distributed system. With HashiCorp’s Vault you have a central place to manage external secret properties for applications across all environments. Vault can manage static and dynamic secrets such as username/password for remote applications/resources and provide credentials for external services such as MySQL, PostgreSQL, Apache Cassandra, MongoDB, Consul, AWS and more.
Specifically for Spring applications:
-
Retrieve secrets from Vault and initialize Spring Environment with remote property sources.
-
Obtain secrets secured with SSL.
-
Generate credentials for MySQL, PostgreSQL, Apache Cassandra, MongoDB, Consul, AWS, and RabbitMQ.
-
Token, AppId, AppRole, Client Certificate, Cubbyhole, AWS-EC2 authentication, AWS-IAM authentication, and Kubernetes authentication.
-
Bootstrap application context: a parent context for the main application that can be trained to do anything.
Prerequisites
To get started with Vault and this guide you need a *NIX-like operating systems that provides:
-
wget
,openssl
andunzip
-
at least Java 7 and a properly configured
JAVA_HOME
environment variable
Install Vault
$ src/test/bash/install_vault.sh
Create SSL certificates for Vault
$ src/test/bash/create_certificates.sh
Note
|
create_certificates.sh creates certificates in work/ca and a JKS truststore work/keystore.jks . If you want to run Spring Cloud Vault using this quickstart guide you need to configure the truststore the spring.cloud.vault.ssl.trust-store property to file:work/keystore.jks .
|
Start Vault server
$ src/test/bash/local_run_vault.sh
Vault is started listening on 0.0.0.0:8200
using the inmem
storage and
https
.
Vault is sealed and not initialized when starting up.
Note
|
If you want to run tests, leave Vault uninitialized. The tests will
initialize Vault and create a root token 00000000-0000-0000-0000-000000000000 .
|
If you want to use Vault for your application or give it a try then you need to initialize it first.
$ export VAULT_ADDR="https://localhost:8200"
$ export VAULT_SKIP_VERIFY=true # Don't do this for production
$ vault init
You should see something like:
Key 1: 7149c6a2e16b8833f6eb1e76df03e47f6113a3288b3093faf5033d44f0e70fe701
Key 2: 901c534c7988c18c20435a85213c683bdcf0efcd82e38e2893779f152978c18c02
Key 3: 03ff3948575b1165a20c20ee7c3e6edf04f4cdbe0e82dbff5be49c63f98bc03a03
Key 4: 216ae5cc3ddaf93ceb8e1d15bb9fc3176653f5b738f5f3d1ee00cd7dccbe926e04
Key 5: b2898fc8130929d569c1677ee69dc5f3be57d7c4b494a6062693ce0b1c4d93d805
Initial Root Token: 19aefa97-cccc-bbbb-aaaa-225940e63d76
Vault initialized with 5 keys and a key threshold of 3. Please
securely distribute the above keys. When the Vault is re-sealed,
restarted, or stopped, you must provide at least 3 of these keys
to unseal it again.
Vault does not store the master key. Without at least 3 keys,
your Vault will remain permanently sealed.
Vault will initialize and return a set of unsealing keys and the root token.
Pick 3 keys and unseal Vault. Store the Vault token in the VAULT_TOKEN
environment variable.
$ vault unseal (Key 1)
$ vault unseal (Key 2)
$ vault unseal (Key 3)
$ export VAULT_TOKEN=(Root token)
# Required to run Spring Cloud Vault tests after manual initialization
$ vault token-create -id="00000000-0000-0000-0000-000000000000" -policy="root"
Spring Cloud Vault accesses different resources. By default, the secret backend is enabled which accesses secret config settings via JSON endpoints.
The HTTP service has resources in the form:
/secret/{application}/{profile} /secret/{application} /secret/{defaultContext}/{profile} /secret/{defaultContext}
where the "application" is injected as the spring.application.name
in the
SpringApplication
(i.e. what is normally "application" in a regular
Spring Boot app), "profile" is an active profile (or comma-separated
list of properties). Properties retrieved from Vault will be used "as-is"
without further prefixing of the property names.
To use these features in an application, just build it as a Spring
Boot application that depends on spring-cloud-vault-config
(e.g. see
the test cases). Example Maven configuration:
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.4.RELEASE</version>
<relativePath /> <!-- lookup parent from repository -->
</parent>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-vault-config</artifactId>
<version>{spring-cloud-version}</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
<!-- repositories also needed for snapshots and milestones -->
Then you can create a standard Spring Boot application, like this simple HTTP server:
@SpringBootApplication
@RestController
public class Application {
@RequestMapping("/")
public String home() {
return "Hello World!";
}
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}
When it runs it will pick up the external configuration from the
default local Vault server on port 8200
if it is running. To modify
the startup behavior you can change the location of the Vault server
using bootstrap.properties
(like application.properties
but for
the bootstrap phase of an application context), e.g.
spring.cloud.vault:
host: localhost
port: 8200
scheme: https
uri: https://localhost:8200
connection-timeout: 5000
read-timeout: 15000
config:
order: -10
-
host
sets the hostname of the Vault host. The host name will be used for SSL certificate validation -
port
sets the Vault port -
scheme
setting the scheme tohttp
will use plain HTTP. Supported schemes arehttp
andhttps
. -
uri
configure the Vault endpoint with an URI. Takes precedence over host/port/scheme configuration -
connection-timeout
sets the connection timeout in milliseconds -
read-timeout
sets the read timeout in milliseconds -
config.order
sets the order for the property source
Enabling further integrations requires additional dependencies and configuration. Depending on how you have set up Vault you might need additional configuration like SSL and authentication.
If the application imports the spring-boot-starter-actuator
project, the
status of the vault server will be available via the /health
endpoint.
The vault health indicator can be enabled or disabled through the
property health.vault.enabled
(default true
).
Vault requires an authentication mechanism to authorize client requests.
Spring Cloud Vault supports multiple authentication mechanisms to authenticate applications with Vault.
For a quickstart, use the root token printed by the Vault initialization.
spring.cloud.vault:
token: 19aefa97-cccc-bbbb-aaaa-225940e63d76
Warning
|
Consider carefully your security requirements. Static token authentication is fine if you want quickly get started with Vault, but a static token is not protected any further. Any disclosure to unintended parties allows Vault use with the associated token roles. |
Spring Cloud Vault Config requires SSL certificates and a running
Vault instance listening on localhost:8200
. Certificates and the Vault
setup are scripted, the scripts are located in src/test/bash
.
The following scripts need to be run prior to building the project for the tests to pass.
$ ./src/test/bash/install_vault.sh
$ ./src/test/bash/create_certificates.sh
$ ./src/test/bash/local_run_vault.sh
Leave Vault uninitialized, the tests will initialize and unseal Vault. They will also create a root token 00000000-0000-0000-0000-000000000000
.
Changes to the documentation should be made to the adocs found under docs/src/main/asciidoc/
README.adoc
can be re-generated via the following
$ ./docs/src/main/ruby/generate_readme.sh > README.adoc
This script requires ruby and the asciidoctor gem installed (gem install asciidoctor
)
To build the source you will need to install JDK 1.7.
Spring Cloud uses Maven for most build-related activities, and you should be able to get off the ground quite quickly by cloning the project you are interested in and typing
$ ./mvnw install
Note
|
You can also install Maven (>=3.3.3) yourself and run the mvn command
in place of ./mvnw in the examples below. If you do that you also
might need to add -P spring if your local Maven settings do not
contain repository declarations for spring pre-release artifacts.
|
Note
|
Be aware that you might need to increase the amount of memory
available to Maven by setting a MAVEN_OPTS environment variable with
a value like -Xmx512m -XX:MaxPermSize=128m . We try to cover this in
the .mvn configuration, so if you find you have to do it to make a
build succeed, please raise a ticket to get the settings added to
source control.
|
For hints on how to build the project look in .travis.yml
if there
is one. There should be a "script" and maybe "install" command. Also
look at the "services" section to see if any services need to be
running locally (e.g. mongo or rabbit). Ignore the git-related bits
that you might find in "before_install" since they’re related to setting git
credentials and you already have those.
The projects that require middleware generally include a
docker-compose.yml
, so consider using
Docker Compose to run the middeware servers
in Docker containers. See the README in the
scripts demo
repository for specific instructions about the common cases of mongo,
rabbit and redis.
Note
|
If all else fails, build with the command from .travis.yml (usually
./mvnw install ).
|
The spring-cloud-build module has a "docs" profile, and if you switch
that on it will try to build asciidoc sources from
src/main/asciidoc
. As part of that process it will look for a
README.adoc
and process it by loading all the includes, but not
parsing or rendering it, just copying it to ${main.basedir}
(defaults to ${basedir}
, i.e. the root of the project). If there are
any changes in the README it will then show up after a Maven build as
a modified file in the correct place. Just commit it and push the change.
If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.
We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse marketplace".
Note
|
Older versions of m2e do not support Maven 3.3, so once the
projects are imported into Eclipse you will also need to tell
m2eclipse to use the right profile for the projects. If you
see many different errors related to the POMs in the projects, check
that you have an up to date installation. If you can’t upgrade m2e,
add the "spring" profile to your settings.xml . Alternatively you can
copy the repository settings from the "spring" profile of the parent
pom into your settings.xml .
|
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard Github development process, using Github tracker for issues and merging pull requests into master. If you want to contribute even something trivial please do not hesitate, but follow the guidelines below.
Before we accept a non-trivial patch or pull request we will need you to sign the Contributor License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but it does mean that we can accept your contributions, and you will get an author credit if we do. Active contributors might be asked to join the core team, and given the ability to merge pull requests.
This project adheres to the Contributor Covenant code of conduct. By participating, you are expected to uphold this code. Please report unacceptable behavior to [email protected].
None of these is essential for a pull request, but they will all help. They can also be added after the original pull request but before a merge.
-
Use the Spring Framework code format conventions. If you use Eclipse you can import formatter settings using the
eclipse-code-formatter.xml
file from the Spring Cloud Build project. If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file. -
Make sure all new
.java
files to have a simple Javadoc class comment with at least an@author
tag identifying you, and preferably at least a paragraph on what the class is for. -
Add the ASF license header comment to all new
.java
files (copy from existing files in the project) -
Add yourself as an
@author
to the .java files that you modify substantially (more than cosmetic changes). -
Add some Javadocs and, if you change the namespace, some XSD doc elements.
-
A few unit tests would help a lot as well — someone has to do it.
-
If no-one else is using your branch, please rebase it against the current master (or other target branch in the main project).
-
When writing a commit message please follow these conventions, if you are fixing an existing issue please add
Fixes gh-XXXX
at the end of the commit message (where XXXX is the issue number).