Skip to content

Commit

Permalink
feat: Deploy Gradio UI App as a k8s deployment and service for stable…
Browse files Browse the repository at this point in the history
… diffusion inference (awslabs#461)
  • Loading branch information
ratnopamc authored Mar 5, 2024
1 parent a38b7ba commit 5f96cb3
Show file tree
Hide file tree
Showing 18 changed files with 102 additions and 101 deletions.

This file was deleted.

Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Use Python base image
FROM --platform=linux/amd64 python:3.9-slim

# Set working directory in the container
WORKDIR /app

# Copy the Python script into the container
COPY gradio-app-stablediffusion.py /app/gradio-app-stablediffusion.py

RUN pip install --no-cache-dir gradio requests Pillow

# Command to run the Python script
ENTRYPOINT ["python", "gradio-app-stablediffusion.py"]
Original file line number Diff line number Diff line change
@@ -1,14 +1,12 @@
import gradio as gr
import requests
import json
import os
from PIL import Image
from io import BytesIO

# Constants for model endpoint and service name
model_endpoint = "/imagine"
# service_name = "http://<REPLACE_ME_WITH_ELB_DNS_NAME>/serve"
service_name = "http://localhost:8000" # Replace with your actual service name

model_endpoint = os.environ.get("MODEL_ENDPOINT", "/imagine")
service_name = os.environ.get("SERVICE_NAME", "http://localhost:8000")

# Function to generate image based on prompt
def generate_image(prompt):
Expand All @@ -25,9 +23,10 @@ def generate_image(prompt):

except requests.exceptions.RequestException as e:
# Handle any request exceptions (e.g., connection errors)
return f"AI: Error: {str(e)}"
# return f"AI: Error: {str(e)}"
return Image.new('RGB', (100, 100), color='red')

# Define the Gradio PromptInterface
demo = gr.Interface(fn=generate_image,
inputs = [gr.Textbox(label="Enter the Prompt")],
outputs = gr.Image(type='pil')).launch(debug='True')
outputs = gr.Image(type='pil')).launch(server_name="0.0.0.0")
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
apiVersion: v1
kind: Namespace
metadata:
name: gradio
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: gradio-deployment
namespace: gradio
labels:
app: gradio
spec:
replicas: 1
selector:
matchLabels:
app: gradio
template:
metadata:
labels:
app: gradio
spec:
containers:
- name: gradio
image: public.ecr.aws/data-on-eks/gradio-app:sd-v1.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 7860
resources:
requests:
cpu: "512m"
memory: "2048Mi"
limits:
cpu: "1"
memory: "4096Mi"
env:
- name: MODEL_ENDPOINT
value: "/imagine"
#Please note that the service name is currently hardcoded to match the Stable Diffusion service for this blueprint. If there are any updates or changes to the actual RayServe deployment, you'll need to update the service name in this code accordingly.
- name: SERVICE_NAME
value: "http://stablediffusion-service.stablediffusion.svc.cluster.local:8000"
---
apiVersion: v1
kind: Service
metadata:
name: gradio-service
namespace: gradio
spec:
selector:
app: gradio
ports:
- name: http
protocol: TCP
port: 7860
targetPort: 7860
type: ClusterIP
9 changes: 5 additions & 4 deletions analytics/terraform/datahub-on-eks/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,7 @@ Checkout the [documentation website](https://awslabs.github.io/data-on-eks/docs/
| <a name="module_eks"></a> [eks](#module\_eks) | terraform-aws-modules/eks/aws | ~> 19.15 |
| <a name="module_eks_blueprints_addons"></a> [eks\_blueprints\_addons](#module\_eks\_blueprints\_addons) | aws-ia/eks-blueprints-addons/aws | ~> 1.2 |
| <a name="module_vpc"></a> [vpc](#module\_vpc) | terraform-aws-modules/vpc/aws | ~> 5.0 |
| <a name="module_vpc_endpoints"></a> [vpc\_endpoints](#module\_vpc\_endpoints) | terraform-aws-modules/vpc/aws//modules/vpc-endpoints | ~> 5.0 |
| <a name="module_vpc_endpoints_sg"></a> [vpc\_endpoints\_sg](#module\_vpc\_endpoints\_sg) | terraform-aws-modules/security-group/aws | ~> 5.0 |
| <a name="module_vpc_endpoints"></a> [vpc\_endpoints](#module\_vpc\_endpoints) | terraform-aws-modules/vpc/aws//modules/vpc-endpoints | ~> 5.1 |

## Resources

Expand All @@ -43,15 +42,17 @@ Checkout the [documentation website](https://awslabs.github.io/data-on-eks/docs/

| Name | Description | Type | Default | Required |
|------|-------------|------|---------|:--------:|
| <a name="input_create_iam_service_linked_role_es"></a> [create\_iam\_service\_linked\_role\_es](#input\_create\_iam\_service\_linked\_role\_es) | Whether to create `AWSServiceRoleForAmazonOpensearchService` service-linked role. Set it to `false` if the role already exists | `bool` | `true` | no |
| <a name="input_create_vpc"></a> [create\_vpc](#input\_create\_vpc) | Create VPC | `bool` | `true` | no |
| <a name="input_eks_cluster_version"></a> [eks\_cluster\_version](#input\_eks\_cluster\_version) | EKS Cluster version | `string` | `"1.26"` | no |
| <a name="input_enable_vpc_endpoints"></a> [enable\_vpc\_endpoints](#input\_enable\_vpc\_endpoints) | Enable VPC Endpoints | `bool` | `false` | no |
| <a name="input_name"></a> [name](#input\_name) | Name of the VPC and EKS Cluster | `string` | `"datahub-on-eks"` | no |
| <a name="input_private_subnet_ids"></a> [private\_subnet\_ids](#input\_private\_subnet\_ids) | Ids for existing private subnets - needed when create\_vpc set to false | `list(string)` | `[]` | no |
| <a name="input_private_subnets"></a> [private\_subnets](#input\_private\_subnets) | Private Subnets CIDRs. 32766 Subnet1 and 16382 Subnet2 IPs per Subnet | `list(string)` | <pre>[<br> "10.1.0.0/17",<br> "10.1.128.0/18"<br>]</pre> | no |
| <a name="input_public_subnets"></a> [public\_subnets](#input\_public\_subnets) | Public Subnets CIDRs. 62 IPs per Subnet | `list(string)` | <pre>[<br> "10.1.255.128/26",<br> "10.1.255.192/26"<br>]</pre> | no |
| <a name="input_region"></a> [region](#input\_region) | Region | `string` | `"us-west-2"` | no |
| <a name="input_tags"></a> [tags](#input\_tags) | Default tags | `map(string)` | `{}` | no |
| <a name="input_vpc_cidr"></a> [vpc\_cidr](#input\_vpc\_cidr) | VPC CIDR | `string` | `"10.1.0.0/16"` | no |
| <a name="input_vpc_cidr"></a> [vpc\_cidr](#input\_vpc\_cidr) | VPC CIDR - must change to match the cidr of the existing VPC if create\_vpc set to false | `string` | `"10.1.0.0/16"` | no |
| <a name="input_vpc_id"></a> [vpc\_id](#input\_vpc\_id) | VPC Id for the existing vpc - needed when create\_vpc set to false | `string` | `""` | no |

## Outputs

Expand Down
1 change: 0 additions & 1 deletion analytics/terraform/datahub-on-eks/providers.tf
Original file line number Diff line number Diff line change
Expand Up @@ -15,4 +15,3 @@ provider "helm" {
token = data.aws_eks_cluster_auth.this.token
}
}

2 changes: 1 addition & 1 deletion website/docs/gen-ai/inference/Llama2.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ aws eks --region us-west-2 update-kubeconfig --name trainium-inferentia
**Deploy RayServe Cluster**

```bash
cd ai-ml/trainium-inferentia/examples/ray-serve/llama2-inf2
cd ai-ml/trainium-inferentia/examples/inference/ray-serve/llama2-inf2
kubectl apply -f ray-service-llama2.yaml
```

Expand Down
55 changes: 21 additions & 34 deletions website/docs/gen-ai/inference/StableDiffusion.md
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ aws eks --region us-west-2 update-kubeconfig --name trainium-inferentia
**Deploy RayServe Cluster**

```bash
cd ai-ml/trainium-inferentia/examples/ray-serve/stable-diffusion-inf2
cd ai-ml/trainium-inferentia/examples/inference/ray-serve/stable-diffusion-inf2
kubectl apply -f ray-service-stablediffusion.yaml
```

Expand Down Expand Up @@ -192,11 +192,12 @@ From this webpage, you will be able to monitor the progress of Model deployment,
![Ray Dashboard](img/ray-dashboard-sdxl.png)

### To Test the Stable Diffusion XL Model
Once you see the status of the model deployment is in `running` state then you can start using Llama-2-chat.

Once you've verified that the Stable Diffusion model deployment status has switched to a `running` state in Ray Dashboard , you're all set to start leveraging the model. This change in status signifies that the Stable Diffusion model is now fully functional and prepared to handle your image generation requests based on textual descriptions."

You can use the following URL with a query added at the end of the URL.

http://\<NLB_DNS_NAME\>/serve/serve/imagine?prompt=an astronaut is dancing on green grass, sunlit
http://\<NLB_DNS_NAME\>/serve/imagine?prompt=an astronaut is dancing on green grass, sunlit

You will see an output like this in your browser:

Expand All @@ -205,66 +206,52 @@ You will see an output like this in your browser:
## Deploying the Gradio WebUI App
Discover how to create a user-friendly chat interface using [Gradio](https://www.gradio.app/) that integrates seamlessly with deployed models.

Let's deploy Gradio app locally on your machine to interact with the Stable Diffusion XL model deployed using RayServe.
Let's move forward with setting up the Gradio app as a Kubernetes deployment, utilizing a Docker container. This setup will enable interaction with the Stable Diffusion XL model, which is deployed using RayServe.

:::info

The Gradio app interacts with the locally exposed service created solely for the demonstration. Alternatively, you can deploy the Gradio app on EKS as a Pod with Ingress and Load Balancer for wider accessibility.
The Gradio UI application is containerized and the container image is stored in [data-on-eks](https://gallery.ecr.aws/data-on-eks/gradio-app) public repository. The Gradio app container internally points to the `stablediffusion-service` that's running on port 8000.

:::

### Execute Port Forward to the stablediffusion Ray Service
First, execute a port forward to the stablediffusion Ray Service using kubectl:
### Deploy the Gradio Pod as Deployment

```bash
kubectl port-forward svc/stablediffusion-service 8000:8000 -n stablediffusion
```

### Deploy Gradio WebUI Locally

#### Create a Virtual Environment
Create a Python virtual environment in your machine for the Gradio application:
First, deploy the Gradio app as a Deployment on EKS using kubectl:

```bash
cd ai-ml/trainium-inferentia/examples/gradio-ui
python3 -m venv .venv
source .venv/bin/activate
cd gradio-ui
kubectl apply -f gradio-deploy.yaml
```

#### Install Gradio Image Generator app
Install all the Gradio WebUI app dependencies with pip
This should create a Deployment and a Service in namespace `gradio`. Check the status of the resources.

```bash
pip install gradio requests
kubectl -n gradio get all
NAME READY STATUS RESTARTS AGE
pod/gradio-deployment-59cfbffdf5-q745z 1/1 Running 0 143m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/gradio-service ClusterIP 172.20.245.153 <none> 7860/TCP 3d12h
```

#### Invoke the WebUI
Run the Gradio WebUI using the following command:

NOTE: `gradio-app-stablediffusion.py` refers to the port forward url. e.g., `service_name = "http://localhost:8000" `
Execute a port forward to the `gradio-service` Service using kubectl:

```bash
python gradio-app-stablediffusion.py
kubectl -n gradio port-forward service/gradio-service 8080:7860
```

You should see output similar to the following:

```text
Running on local URL: http://127.0.0.1:7860
To create a public link, set `share=True` in `launch()`.
```

#### 2.4. Access the WebUI from Your Browser
Open your web browser and access the Gradio WebUI by navigating to the following URL:

http://127.0.0.1:7860
Running on local URL: http://localhost:8080

You should now be able to interact with the Gradio application from your local machine.

![Gradio Output](img/stable-diffusion-xl-gradio.png)

## Conclusion

In conclusion, you will have successfully deployed the **Stable-diffusion-xl-base** model on EKS with Ray Serve and created a prompt based web UI using Gradio.
This opens up exciting possibilities for natural language processing and prompt based image generator and image predictor development.

Expand Down

0 comments on commit 5f96cb3

Please sign in to comment.