Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update greedy_causal_lm.cpp to read EOS Token #315

Merged
merged 20 commits into from
Apr 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 20 additions & 8 deletions text_generation/causal_lm/cpp/beam_search_causal_lm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ std::string detokenize(ov::InferRequest& detokenizer, const std::vector<int64_t>
detokenizer.infer();
return detokenizer.get_output_tensor().data<std::string>()[0];
}
} // namespace
}

int main(int argc, char* argv[]) try {
if (argc != 3) {
Expand All @@ -31,15 +31,17 @@ int main(int argc, char* argv[]) try {
// Compile models
ov::Core core;
core.add_extension(OPENVINO_TOKENIZERS_PATH); // OPENVINO_TOKENIZERS_PATH is defined in CMakeLists.txt
//Read the tokenizer model information from the file to later get the runtime information
auto tokenizer_model = core.read_model(std::string{argv[1]} + "/openvino_tokenizer.xml");
// tokenizer and detokenizer work on CPU only
ov::InferRequest tokenizer =
core.compile_model(std::string{argv[1]} + "/openvino_tokenizer.xml", "CPU").create_infer_request();
ov::InferRequest tokenizer = core.compile_model(
tokenizer_model, "CPU").create_infer_request();
auto [input_ids, attention_mask] = tokenize(tokenizer, argv[2]);
ov::InferRequest detokenizer =
core.compile_model(std::string{argv[1]} + "/openvino_detokenizer.xml", "CPU").create_infer_request();
ov::InferRequest detokenizer = core.compile_model(
std::string{argv[1]} + "/openvino_detokenizer.xml", "CPU").create_infer_request();
// The model can be compiled for GPU as well
ov::InferRequest lm =
core.compile_model(std::string{argv[1]} + "/openvino_model.xml", "CPU").create_infer_request();
ov::InferRequest lm = core.compile_model(
std::string{argv[1]} + "/openvino_model.xml", "CPU").create_infer_request();
// Initialize inputs
lm.set_tensor("input_ids", input_ids);
lm.set_tensor("attention_mask", attention_mask);
Expand All @@ -49,8 +51,18 @@ int main(int argc, char* argv[]) try {
lm.get_tensor("beam_idx").set_shape({1});
lm.get_tensor("beam_idx").data<int32_t>()[0] = 0;

// Get the runtime info from the tokenizer model that we read earlier
auto rt_info = tokenizer_model->get_rt_info(); //Get the runtime info for the model
int64_t SPECIAL_EOS_TOKEN;

if (rt_info.count("eos_token_id") > 0) { //check if the runtime information has a valid EOS token ID
SPECIAL_EOS_TOKEN = rt_info["eos_token_id"].as<int64_t>();

} else {
throw std::runtime_error("EOS token ID not found in model's runtime information.");
}
const int64_t* prompt_data = input_ids.data<const int64_t>();
Parameters parameters{std::vector<int64_t>{prompt_data, prompt_data + input_ids.get_size()}};
Parameters parameters{std::vector<int64_t>{prompt_data, prompt_data + input_ids.get_size()}, SPECIAL_EOS_TOKEN};
GroupBeamSearcher group_beam_searcher{parameters};
std::vector<int64_t> next_tokens;
std::vector<int32_t> next_beams;
Expand Down
18 changes: 14 additions & 4 deletions text_generation/causal_lm/cpp/greedy_causal_lm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -61,9 +61,11 @@ int main(int argc, char* argv[]) try {
// Compile models
ov::Core core;
core.add_extension(OPENVINO_TOKENIZERS_PATH); // OPENVINO_TOKENIZERS_PATH is defined in CMakeLists.txt
//Read the tokenizer model information from the file to later get the runtime information
auto tokenizer_model = core.read_model(std::string{argv[1]} + "/openvino_tokenizer.xml");
// tokenizer and detokenizer work on CPU only
ov::InferRequest tokenizer = core.compile_model(
anzr299 marked this conversation as resolved.
Show resolved Hide resolved
std::string{argv[1]} + "/openvino_tokenizer.xml", "CPU").create_infer_request();
tokenizer_model, "CPU").create_infer_request();
auto [input_ids, attention_mask] = tokenize(tokenizer, argv[2]);
ov::InferRequest detokenizer = core.compile_model(
std::string{argv[1]} + "/openvino_detokenizer.xml", "CPU").create_infer_request();
Expand Down Expand Up @@ -91,9 +93,17 @@ int main(int argc, char* argv[]) try {
lm.get_tensor("input_ids").set_shape({BATCH_SIZE, 1});
position_ids.set_shape({BATCH_SIZE, 1});
TextStreamer text_streamer{std::move(detokenizer)};
// There's no way to extract special token values from the detokenizer for now
constexpr int64_t SPECIAL_EOS_TOKEN = 2;


// Get the runtime info from the tokenizer model that we read earlier
auto rt_info = tokenizer_model->get_rt_info(); //Get the runtime info for the model
int64_t SPECIAL_EOS_TOKEN;

if (rt_info.count("eos_token_id") > 0) { //check if the runtime information has a valid EOS token ID
SPECIAL_EOS_TOKEN = rt_info["eos_token_id"].as<int64_t>();
} else {
throw std::runtime_error("EOS token ID not found in model's runtime information.");
pavel-esir marked this conversation as resolved.
Show resolved Hide resolved
}

int max_sequence_length = 100;
while (out_token != SPECIAL_EOS_TOKEN && seq_len < max_sequence_length) {
++seq_len;
Expand Down
59 changes: 25 additions & 34 deletions text_generation/causal_lm/cpp/group_beam_searcher.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -44,10 +44,7 @@ std::vector<int64_t> kmp_search(const std::vector<int64_t>& haystack, const std:
return res;
}

struct Token {
float log_prob;
int64_t idx;
};
struct Token {float log_prob; int64_t idx;};

std::vector<Token> log_softmax(const ov::Tensor& logits, size_t batch_idx) {
if (logits.get_shape().at(0) <= batch_idx) {
Expand All @@ -58,10 +55,10 @@ std::vector<Token> log_softmax(const ov::Tensor& logits, size_t batch_idx) {
size_t sequence_offset = (logits.get_shape().at(1) - 1) * vocab_size;
const float* beam_logits = logits.data<const float>() + batch_offset + sequence_offset;
float max_logit = *std::max_element(beam_logits, beam_logits + vocab_size);
float log_sum = std::log(
std::accumulate(beam_logits, beam_logits + vocab_size, 0.0f, [max_logit](float accumulated, float to_add) {
float log_sum = std::log(std::accumulate(
beam_logits, beam_logits + vocab_size, 0.0f, [max_logit](float accumulated, float to_add) {
return accumulated + std::exp(to_add - max_logit);
}));
}));
std::vector<Token> tokens;
tokens.reserve(vocab_size);
for (size_t idx = 0; idx < vocab_size; ++idx) {
Expand All @@ -80,26 +77,24 @@ bool greater(const Beam& left, const Beam& right) {
return left.score > right.score;
}

enum class StopCriteria { early, heuristic, never };
enum class StopCriteria {early, heuristic, never};

struct Parameters {
std::vector<int64_t> prompt;
int64_t eos_token;
size_t n_groups = 3;
size_t group_size = 5;
float diversity_penalty = 1.0;
size_t max_new_tokens = 20;
StopCriteria stop_criteria = StopCriteria::heuristic;
float length_penalty = 1.0;
size_t no_repeat_ngram_size = std::numeric_limits<size_t>::max();
// There's no way to extract special token values from the tokenizer for now
int64_t eos_token = 2;
std::function<bool(const Beam&)> early_finish = [](const Beam&) {
return false;
};

std::function<bool(const Beam&)> early_finish = [](const Beam&){return false;};
};

struct Group {
std::vector<Beam> ongoing; // Best beams in front
std::vector<Beam> ongoing; // Best beams in front
std::vector<Beam> min_heap; // The worst of the best completed beams is the first
bool done = false;

Expand All @@ -126,30 +121,26 @@ struct Group {
float best_sum_logprobs = ongoing.front().score;
float worst_score = min_heap.front().score;
switch (parameters.stop_criteria) {
case StopCriteria::early:
done = true;
return;
case StopCriteria::heuristic: {
float highest_attainable_score = best_sum_logprobs / std::pow(float(cur_len), parameters.length_penalty);
done = worst_score >= highest_attainable_score;
return;
}
case StopCriteria::never: {
size_t length = parameters.length_penalty > 0.0 ? parameters.max_new_tokens : cur_len;
float highest_attainable_score = best_sum_logprobs / std::pow(float(length), parameters.length_penalty);
done = worst_score >= highest_attainable_score;
return;
}
default:
throw std::runtime_error("Never reached");
case StopCriteria::early:
done = true;
return;
case StopCriteria::heuristic: {
float highest_attainable_score = best_sum_logprobs / std::pow(float(cur_len), parameters.length_penalty);
done = worst_score >= highest_attainable_score;
return;
}
case StopCriteria::never: {
size_t length = parameters.length_penalty > 0.0 ? parameters.max_new_tokens : cur_len;
float highest_attainable_score = best_sum_logprobs / std::pow(float(length), parameters.length_penalty);
done = worst_score >= highest_attainable_score;
return;
}
default: throw std::runtime_error("Never reached");
}
}
};

struct TokenToBeam {
int64_t token_idx;
int32_t beam_idx;
};
struct TokenToBeam {int64_t token_idx; int32_t beam_idx;};

// GroupBeamSearcher processes logits prduced by a language model and accumulates beams using group beam search
// algorithm. select_next_tokens() returns token ids selected by the algorithm and corresponding beam ids. These values
Expand Down
Loading