Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Bump timm from 1.0.11 to 1.0.12 (#1328)
Bumps [timm](https://github.com/huggingface/pytorch-image-models) from 1.0.11 to 1.0.12. <details> <summary>Release notes</summary> <p><em>Sourced from <a href="https://github.com/huggingface/pytorch-image-models/releases">timm's releases</a>.</em></p> <blockquote> <h2>Release v1.0.12</h2> <h2>Nov 28, 2024</h2> <ul> <li>More optimizers <ul> <li>Add MARS optimizer (<a href="https://arxiv.org/abs/2411.10438">https://arxiv.org/abs/2411.10438</a>, <a href="https://github.com/AGI-Arena/MARS">https://github.com/AGI-Arena/MARS</a>)</li> <li>Add LaProp optimizer (<a href="https://arxiv.org/abs/2002.04839">https://arxiv.org/abs/2002.04839</a>, <a href="https://github.com/Z-T-WANG/LaProp-Optimizer">https://github.com/Z-T-WANG/LaProp-Optimizer</a>)</li> <li>Add masking from 'Cautious Optimizers' (<a href="https://arxiv.org/abs/2411.16085">https://arxiv.org/abs/2411.16085</a>, <a href="https://github.com/kyleliang919/C-Optim">https://github.com/kyleliang919/C-Optim</a>) to Adafactor, Adafactor Big Vision, AdamW (legacy), Adopt, Lamb, LaProp, Lion, NadamW, RMSPropTF, SGDW</li> <li>Cleanup some docstrings and type annotations re optimizers and factory</li> </ul> </li> <li>Add MobileNet-V4 Conv Medium models pretrained on in12k and fine-tuned in1k @ 384x384 <ul> <li><a href="https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k_ft_in1k">https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k_ft_in1k</a></li> <li><a href="https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k">https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k</a></li> <li><a href="https://huggingface.co/timm/mobilenetv4_conv_medium.e180_ad_r384_in12k">https://huggingface.co/timm/mobilenetv4_conv_medium.e180_ad_r384_in12k</a></li> <li><a href="https://huggingface.co/timm/mobilenetv4_conv_medium.e180_r384_in12k">https://huggingface.co/timm/mobilenetv4_conv_medium.e180_r384_in12k</a></li> </ul> </li> <li>Add small cs3darknet, quite good for the speed <ul> <li><a href="https://huggingface.co/timm/cs3darknet_focus_s.ra4_e3600_r256_in1k">https://huggingface.co/timm/cs3darknet_focus_s.ra4_e3600_r256_in1k</a></li> </ul> </li> </ul> <h2>Nov 12, 2024</h2> <ul> <li>Optimizer factory refactor <ul> <li>New factory works by registering optimizers using an OptimInfo dataclass w/ some key traits</li> <li>Add <code>list_optimizers</code>, <code>get_optimizer_class</code>, <code>get_optimizer_info</code> to reworked <code>create_optimizer_v2</code> fn to explore optimizers, get info or class</li> <li>deprecate <code>optim.optim_factory</code>, move fns to <code>optim/_optim_factory.py</code> and <code>optim/_param_groups.py</code> and encourage import via <code>timm.optim</code></li> </ul> </li> <li>Add Adopt (<a href="https://github.com/iShohei220/adopt">https://github.com/iShohei220/adopt</a>) optimizer</li> <li>Add 'Big Vision' variant of Adafactor (<a href="https://github.com/google-research/big_vision/blob/main/big_vision/optax.py">https://github.com/google-research/big_vision/blob/main/big_vision/optax.py</a>) optimizer</li> <li>Fix original Adafactor to pick better factorization dims for convolutions</li> <li>Tweak LAMB optimizer with some improvements in torch.where functionality since original, refactor clipping a bit</li> <li>dynamic img size support in vit, deit, eva improved to support resize from non-square patch grids, thanks <a href="https://github.com/wojtke">https://github.com/wojtke</a></li> </ul> <h2>Oct 31, 2024</h2> <p>Add a set of new very well trained ResNet & ResNet-V2 18/34 (basic block) weights. See <a href="https://huggingface.co/blog/rwightman/resnet-trick-or-treat">https://huggingface.co/blog/rwightman/resnet-trick-or-treat</a></p> <h2>Oct 19, 2024</h2> <ul> <li>Cleanup torch amp usage to avoid cuda specific calls, merge support for Ascend (NPU) devices from <a href="https://github.com/MengqingCao">MengqingCao</a> that should work now in PyTorch 2.5 w/ new device extension autoloading feature. Tested Intel Arc (XPU) in Pytorch 2.5 too and it (mostly) worked.</li> </ul> <h2>What's Changed</h2> <ul> <li>mambaout.py: fixed bug by <a href="https://github.com/NightMachinery"><code>@NightMachinery</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2305">huggingface/pytorch-image-models#2305</a></li> <li>Cleanup some amp related behaviour to better support different (non-cuda) devices by <a href="https://github.com/rwightman"><code>@rwightman</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2308">huggingface/pytorch-image-models#2308</a></li> <li>Add NPU backend support for val and inference by <a href="https://github.com/MengqingCao"><code>@MengqingCao</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2109">huggingface/pytorch-image-models#2109</a></li> <li>Update some clip pretrained weights to point to new hub locations by <a href="https://github.com/rwightman"><code>@rwightman</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2311">huggingface/pytorch-image-models#2311</a></li> <li>ResNet vs MNV4 v1/v2 18 & 34 weights by <a href="https://github.com/rwightman"><code>@rwightman</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2316">huggingface/pytorch-image-models#2316</a></li> <li>Replace deprecated positional argument with --data-dir by <a href="https://github.com/JosuaRieder"><code>@JosuaRieder</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2322">huggingface/pytorch-image-models#2322</a></li> <li>Fix typo in train.py: bathes > batches by <a href="https://github.com/JosuaRieder"><code>@JosuaRieder</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2321">huggingface/pytorch-image-models#2321</a></li> <li>Fix positional embedding resampling for non-square inputs in ViT by <a href="https://github.com/wojtke"><code>@wojtke</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2317">huggingface/pytorch-image-models#2317</a></li> <li>Add trust_remote_code argument to ReaderHfds by <a href="https://github.com/grodino"><code>@grodino</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2326">huggingface/pytorch-image-models#2326</a></li> <li>Extend train epoch schedule by warmup_epochs if warmup_prefix enabled by <a href="https://github.com/rwightman"><code>@rwightman</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2325">huggingface/pytorch-image-models#2325</a></li> <li>Extend existing unit tests using Cover-Agent by <a href="https://github.com/mrT23"><code>@mrT23</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2331">huggingface/pytorch-image-models#2331</a></li> <li>An impl of adafactor as per big vision (scaling vit) changes by <a href="https://github.com/rwightman"><code>@rwightman</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2320">huggingface/pytorch-image-models#2320</a></li> <li>Add py.typed file as recommended by PEP 561 by <a href="https://github.com/antoinebrl"><code>@antoinebrl</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2252">huggingface/pytorch-image-models#2252</a></li> <li>Add CODE_OF_CONDUCT.md and CITATION.cff files by <a href="https://github.com/AlinaImtiaz018"><code>@AlinaImtiaz018</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2333">huggingface/pytorch-image-models#2333</a></li> <li>Add some 384x384 small model weights by <a href="https://github.com/rwightman"><code>@rwightman</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2334">huggingface/pytorch-image-models#2334</a></li> <li>In dist training, update loss running avg every step, sync on log by <a href="https://github.com/rwightman"><code>@rwightman</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2340">huggingface/pytorch-image-models#2340</a></li> <li>Improve WandB logging by <a href="https://github.com/sinahmr"><code>@sinahmr</code></a> in <a href="https://redirect.github.com/huggingface/pytorch-image-models/pull/2341">huggingface/pytorch-image-models#2341</a></li> </ul> <!-- raw HTML omitted --> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/553ded5c6b9f2cd1ce6220baf6561ff526e8ff12"><code>553ded5</code></a> Version 1.0.12</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/464885e13553bc8b74cf255c20c96624b05d8222"><code>464885e</code></a> See if we can avoid some model / layer pickle issues with the aa attr in Conv...</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/5fe5f9d48880fa1ec4bd28e1dade332b6fba0988"><code>5fe5f9d</code></a> Add a different mnv4 conv-small weight</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/303f7691a168febb3c5a142d94f7efd6eb4ce422"><code>303f769</code></a> Add cautious mars, improve test reliability by skipping grad diff for first step</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/82e867769026432dc2ce0082a435679f2abe0d66"><code>82e8677</code></a> Make LaProp weight decay match typical PyTorch 'decoupled' behaviour where it...</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/886eb77938112acaf7e5df0c69cdad26f161c403"><code>886eb77</code></a> Update README, missed small discrep in adafactor min dim update</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/e3e434bbc4c861c11984fcefd6812bbc3bfd38de"><code>e3e434b</code></a> To be technically correct, need to check the in-place _ ver of op</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/7c32d3bd829ab74f71edebb6a793760df685f119"><code>7c32d3b</code></a> Work around _foreach_maximum issue, need scalar other support</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/7cf683628fa93cef2ed6dd2f0dc7e6b17f689e4a"><code>7cf6836</code></a> Cautious optimizer impl plus some typing cleanup.</li> <li><a href="https://github.com/huggingface/pytorch-image-models/commit/aeb1ed7a15594505c1585697c1cd90cb49e7a115"><code>aeb1ed7</code></a> Keep basic optim test LR range closer to before w/ updated code</li> <li>Additional commits viewable in <a href="https://github.com/huggingface/pytorch-image-models/compare/v1.0.11...v1.0.12">compare view</a></li> </ul> </details> <br /> [![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=timm&package-manager=pip&previous-version=1.0.11&new-version=1.0.12)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) --- <details> <summary>Dependabot commands and options</summary> <br /> You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show <dependency name> ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) </details> Signed-off-by: dependabot[bot] <[email protected]> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
- Loading branch information