Skip to content

Efficient data transformation and modeling framework that is backwards compatible with dbt.

License

Notifications You must be signed in to change notification settings

opensource-observer/sqlmesh

 
 

Repository files navigation

SQLMesh logo

SQLMesh is a next-generation data transformation framework designed to ship data quickly, efficiently, and without error. Data teams can efficiently run and deploy data transformations written in SQL or Python with visibility and control at any size.

It is more than just a dbt alternative.

Architecture Diagram

Core Features

SQLMesh Plan Mode

Get instant SQL impact analysis of your changes, whether in the CLI or in SQLMesh Plan Mode

Virtual Data Environments
  • Create isolated development environments without data warehouse costs
  • Plan / Apply workflow like Terraform to understand potential impact of changes
  • Easy to use CI/CD bot for true blue-green deployments
Efficiency and Testing

Running this command will generate a unit test file in the tests/ folder: test_stg_payments.yaml

Runs a live query to generate the expected output of the model

sqlmesh create_test tcloud_demo.stg_payments --query tcloud_demo.seed_raw_payments "select * from tcloud_demo.seed_raw_payments limit 5"

# run the unit test
sqlmesh test
MODEL (
  name tcloud_demo.stg_payments,
  cron '@daily',
  grain payment_id,
  audits (UNIQUE_VALUES(columns = (
      payment_id
  )), NOT_NULL(columns = (
      payment_id
  )))
);

SELECT
    id AS payment_id,
    order_id,
    payment_method,
    amount / 100 AS amount, /* `amount` is currently stored in cents, so we convert it to dollars */
    'new_column' AS new_column, /* non-breaking change example  */
FROM tcloud_demo.seed_raw_payments
test_stg_payments:
model: tcloud_demo.stg_payments
inputs:
    tcloud_demo.seed_raw_payments:
      - id: 66
        order_id: 58
        payment_method: coupon
        amount: 1800
      - id: 27
        order_id: 24
        payment_method: coupon
        amount: 2600
      - id: 30
        order_id: 25
        payment_method: coupon
        amount: 1600
      - id: 109
        order_id: 95
        payment_method: coupon
        amount: 2400
      - id: 3
        order_id: 3
        payment_method: coupon
        amount: 100
outputs:
    query:
      - payment_id: 66
        order_id: 58
        payment_method: coupon
        amount: 18.0
        new_column: new_column
      - payment_id: 27
        order_id: 24
        payment_method: coupon
        amount: 26.0
        new_column: new_column
      - payment_id: 30
        order_id: 25
        payment_method: coupon
        amount: 16.0
        new_column: new_column
      - payment_id: 109
        order_id: 95
        payment_method: coupon
        amount: 24.0
        new_column: new_column
      - payment_id: 3
        order_id: 3
        payment_method: coupon
        amount: 1.0
        new_column: new_column
Level Up Your SQL Write SQL in any dialect and SQLMesh will transpile it to your target SQL dialect on the fly before sending it to the warehouse. Transpile Example
  • Debug transformation errors before you run them in your warehouse in 10+ different SQL dialects
  • Definitions using simply SQL (no need for redundant and confusing Jinja + YAML)
  • See impact of changes before you run them in your warehouse with column-level lineage

For more information, check out the website and documentation.

Getting Started

Install SQLMesh through pypi by running:

mkdir sqlmesh-example
cd sqlmesh-example
python -m venv .env
source .env/bin/activate
pip install sqlmesh
sqlmesh init duckdb # get started right away with a local duckdb instance

Follow the quickstart guide to learn how to use SQLMesh. You already have a head start!

Follow this example to learn how to use SQLMesh in a full walkthrough.

Join Our Community

Together, we want to build data transformation without the waste. Connect with us in the following ways:

Contribution

Contributions in the form of issues or pull requests (from fork) are greatly appreciated.

Read more on how to contribute to SQLMesh open source.

Watch this video walkthrough to see how our team contributes a feature to SQLMesh.

About

Efficient data transformation and modeling framework that is backwards compatible with dbt.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 87.0%
  • TypeScript 12.1%
  • CSS 0.3%
  • Jupyter Notebook 0.2%
  • JavaScript 0.2%
  • Shell 0.1%
  • Other 0.1%