-
-
Notifications
You must be signed in to change notification settings - Fork 56
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement forecast generation and combining script (#75)
* script created * Update README.md * updated test cases * added test case * Calling lat lon cap using function declaration * added forecast init time in csv
- Loading branch information
Showing
2 changed files
with
113 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
import os | ||
import pandas as pd | ||
from datetime import datetime, timedelta | ||
from quartz_solar_forecast.forecast import run_forecast | ||
from quartz_solar_forecast.pydantic_models import PVSite | ||
import unittest | ||
from unittest.mock import patch | ||
|
||
def generate_forecast(init_time_freq, start_datetime, end_datetime, site_name, latitude, longitude, capacity_kwp): | ||
""" | ||
Generates forecasts at specified intervals and saves them into a CSV file. | ||
Args: | ||
init_time_freq (int): The frequency in hours at which the forecasts are generated. | ||
start_datetime (str): The starting date and time for generating forecasts. | ||
end_datetime (str): The ending date and time for generating forecasts. | ||
site_name (str): The name of the site for which the forecasts are generated. | ||
latitude (float): The latitude of the PV site. | ||
longitude (float): The longitude of the PV site. | ||
capacity_kwp (float): The capacity of the PV site in kilowatts peak (kWp). | ||
""" | ||
start = datetime.strptime(start_datetime, "%Y-%m-%d %H:%M:%S") | ||
start_date = start.date() | ||
end = datetime.strptime(end_datetime, "%Y-%m-%d %H:%M:%S") | ||
end_date = end.date() | ||
all_forecasts = pd.DataFrame() | ||
site = PVSite(latitude=latitude, longitude=longitude, capacity_kwp=capacity_kwp) | ||
|
||
init_time = start | ||
while init_time <= end: | ||
print(f"Running forecast for initialization time: {init_time}") | ||
predictions_df = run_forecast(site=site, ts=init_time.strftime("%Y-%m-%d %H:%M:%S")) | ||
predictions_df.reset_index(inplace=True) | ||
predictions_df.rename(columns={'index': 'datetime'}, inplace=True) | ||
predictions_df['forecast_init_time'] = init_time | ||
all_forecasts = pd.concat([all_forecasts, predictions_df]) | ||
init_time += timedelta(hours=init_time_freq) | ||
|
||
output_dir = os.path.join(os.getcwd(), 'csv_forecasts') | ||
if not os.path.exists(output_dir): | ||
os.makedirs(output_dir) | ||
output_file_name = f"forecast_{site_name}_{start_date}_{end_date}.csv" | ||
output_file_path = os.path.join(output_dir, output_file_name) | ||
all_forecasts.to_csv(output_file_path, index=False) | ||
print(f"Forecasts saved to {output_file_path}") | ||
|
||
if __name__ == "__main__": | ||
# please change the site name, start_datetime and end_datetime, latitude, longitude and capacity_kwp as per your requirement | ||
generate_forecast( | ||
init_time_freq=6, | ||
start_datetime="2024-03-10 00:00:00", | ||
end_datetime="2024-03-11 00:00:00", | ||
site_name="Test", | ||
latitude=51.75, | ||
longitude=-1.25, | ||
capacity_kwp=1.25 | ||
) | ||
|
||
class TestGenerateForecast(unittest.TestCase): | ||
def setUp(self): | ||
self.site_name = "TestCase" | ||
self.latitude = 51.75 | ||
self.longitude = -1.25 | ||
self.capacity_kwp = 1.25 | ||
self.start_datetime = "2024-03-10 00:00:00" | ||
self.end_datetime = "2024-03-11 00:00:00" | ||
self.init_time_freq = 6 | ||
self.output_dir = os.path.join(os.getcwd(), 'csv_forecasts') | ||
self.output_file_name = f"forecast_{self.site_name}_{self.start_datetime[:10]}_{self.end_datetime[:10]}.csv" | ||
self.output_file_path = os.path.join(self.output_dir, self.output_file_name) | ||
|
||
@patch('forecast_csv.run_forecast') | ||
def test_generate_forecast(self, mock_run_forecast): | ||
mock_df = pd.DataFrame({ | ||
'datetime': [datetime(2024, 3, 10, 0, 0) + timedelta(hours=6 * i) for i in range(4)], | ||
'power_kw': [0.1, 0.5, 0.8, 0.6], | ||
'forecast_init_time': [datetime(2024, 3, 10, 0, 0)] * 4 | ||
}) | ||
mock_run_forecast.return_value = mock_df | ||
|
||
if not os.path.exists(self.output_dir): | ||
os.makedirs(self.output_dir) | ||
|
||
generate_forecast(self.init_time_freq, | ||
self.start_datetime, | ||
self.end_datetime, | ||
self.site_name, | ||
self.latitude, | ||
self.longitude, | ||
self.capacity_kwp | ||
) | ||
|
||
self.assertTrue(os.path.exists(self.output_file_path)) | ||
os.remove(self.output_file_path) | ||
|
||
if __name__ == '__main__': | ||
unittest.main() |