Skip to content

Commit

Permalink
Added fetch_data.py
Browse files Browse the repository at this point in the history
Python script to fetch Solar Forecast data from Neso Energy
  • Loading branch information
Seao7 authored Nov 29, 2024
1 parent 8628be7 commit 7a4b2f5
Showing 1 changed file with 143 additions and 0 deletions.
143 changes: 143 additions & 0 deletions fetch_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
"""
Script to fetch NESO Solar Forecast Data
"""

import urllib.request
import urllib.parse
import json
import pandas as pd


def fetch_data(
resource_id: str, limit: int, columns: list, rename_columns: dict
) -> pd.DataFrame:
"""
Fetch data from the NESO API and process it into a Pandas DataFrame.
Parameters:
resource_id (str): The unique resource ID for the dataset in the API.
limit (int): The number of records to fetch.
columns (list): List of columns to extract from the data.
rename_columns (dict): Dictionary for renaming columns in the DataFrame.
Returns:
pd.DataFrame: Processed DataFrame containing the requested columns with renamed headers.
Usage Example:
>>> resource_id = "db6c038f-98af-4570-ab60-24d71ebd0ae5"
>>> limit = 50
>>> columns = ['DATE_GMT', 'TIME_GMT', 'EMBEDDED_SOLAR_FORECAST']
>>> rename_columns = {
... 'DATE_GMT': 'start_utc',
... 'TIME_GMT': 'end_utc',
... 'EMBEDDED_SOLAR_FORECAST': 'solar_forecast_kw'
... }
>>> df = fetch_data(resource_id, limit, columns, rename_columns)
"""

base_url = "https://api.neso.energy/api/3/action/datastore_search"
url = f"{base_url}?resource_id={resource_id}&limit={limit}"

try:
response = urllib.request.urlopen(url)
data = json.loads(response.read().decode("utf-8"))

records = data["result"]["records"]

df = pd.DataFrame(records)
df = df[columns]

df.rename(columns=rename_columns, inplace=True)
return df

except Exception as e:
print(f"An error occurred: {e}")
return pd.DataFrame()


def fetch_data_using_sql(
sql_query: str, columns: list, rename_columns: dict
) -> pd.DataFrame:
"""
Fetch data from the NESO API using an SQL query, process it, and return specific columns with renamed headers.
Parameters:
sql_query (str): The SQL query to fetch data from the API.
columns (list): List of columns to extract from the data.
rename_columns (dict): Dictionary for renaming columns in the DataFrame.
Returns:
pd.DataFrame: DataFrame containing the requested columns with renamed headers.
Usage Example:
>>> sql_query = 'SELECT * from "db6c038f-98af-4570-ab60-24d71ebd0ae5" LIMIT 5'
>>> columns = ['DATE_GMT', 'TIME_GMT', 'EMBEDDED_SOLAR_FORECAST']
>>> rename_columns = {
... 'DATE_GMT': 'start_utc',
... 'TIME_GMT': 'end_utc',
... 'EMBEDDED_SOLAR_FORECAST': 'solar_forecast_kw'
... }
>>> df = fetch_data_using_sql(sql_query, columns, rename_columns)
"""

base_url = "https://api.neso.energy/api/3/action/datastore_search_sql"
encoded_query = urllib.parse.quote(sql_query)
url = f"{base_url}?sql={encoded_query}"

try:
response = urllib.request.urlopen(url)
data = json.loads(response.read().decode("utf-8"))

records = data["result"]["records"]
df = pd.DataFrame(records)

df = df[columns]
df.rename(columns=rename_columns, inplace=True)

return df

except Exception as e:
print(f"An error occurred: {e}")
return pd.DataFrame()


def test_fetch_functions():
"""
Test cases for the fetch_data and fetch_data_using_sql functions.
Validates the functionality with different inputs and checks the correctness of the results.
"""

resource_id = "db6c038f-98af-4570-ab60-24d71ebd0ae5"
limit = 5
columns = ["DATE_GMT", "TIME_GMT", "EMBEDDED_SOLAR_FORECAST"]
rename_columns = {
"DATE_GMT": "start_utc",
"TIME_GMT": "end_utc",
"EMBEDDED_SOLAR_FORECAST": "solar_forecast_kw",
}

sql_query = f'SELECT * from "{resource_id}" LIMIT {limit}'

print("Testing fetch_data function...")
df_api = fetch_data(resource_id, limit, columns, rename_columns)
assert not df_api.empty, "fetch_data returned an empty DataFrame!"
assert set(df_api.columns) == set(
rename_columns.values()
), "Column names do not match after renaming!"
print("fetch_data passed the tests.")

print("Testing fetch_data_using_sql function...")
df_sql = fetch_data_using_sql(sql_query, columns, rename_columns)
assert not df_sql.empty, "fetch_data_using_sql returned an empty DataFrame!"
assert set(df_sql.columns) == set(
rename_columns.values()
), "Column names do not match after renaming!"
print("fetch_data_using_sql passed the tests.")

print("Validating data consistency between fetch_data and fetch_data_using_sql...")
assert df_api.equals(
df_sql
), "Data from fetch_data and fetch_data_using_sql are inconsistent!"
print("Data consistency test passed.")

test_fetch_functions()

0 comments on commit 7a4b2f5

Please sign in to comment.