-
-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Python script to fetch Solar Forecast data from Neso Energy
- Loading branch information
Showing
1 changed file
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
""" | ||
Script to fetch NESO Solar Forecast Data | ||
""" | ||
|
||
import urllib.request | ||
import urllib.parse | ||
import json | ||
import pandas as pd | ||
|
||
|
||
def fetch_data( | ||
resource_id: str, limit: int, columns: list, rename_columns: dict | ||
) -> pd.DataFrame: | ||
""" | ||
Fetch data from the NESO API and process it into a Pandas DataFrame. | ||
Parameters: | ||
resource_id (str): The unique resource ID for the dataset in the API. | ||
limit (int): The number of records to fetch. | ||
columns (list): List of columns to extract from the data. | ||
rename_columns (dict): Dictionary for renaming columns in the DataFrame. | ||
Returns: | ||
pd.DataFrame: Processed DataFrame containing the requested columns with renamed headers. | ||
Usage Example: | ||
>>> resource_id = "db6c038f-98af-4570-ab60-24d71ebd0ae5" | ||
>>> limit = 50 | ||
>>> columns = ['DATE_GMT', 'TIME_GMT', 'EMBEDDED_SOLAR_FORECAST'] | ||
>>> rename_columns = { | ||
... 'DATE_GMT': 'start_utc', | ||
... 'TIME_GMT': 'end_utc', | ||
... 'EMBEDDED_SOLAR_FORECAST': 'solar_forecast_kw' | ||
... } | ||
>>> df = fetch_data(resource_id, limit, columns, rename_columns) | ||
""" | ||
|
||
base_url = "https://api.neso.energy/api/3/action/datastore_search" | ||
url = f"{base_url}?resource_id={resource_id}&limit={limit}" | ||
|
||
try: | ||
response = urllib.request.urlopen(url) | ||
data = json.loads(response.read().decode("utf-8")) | ||
|
||
records = data["result"]["records"] | ||
|
||
df = pd.DataFrame(records) | ||
df = df[columns] | ||
|
||
df.rename(columns=rename_columns, inplace=True) | ||
return df | ||
|
||
except Exception as e: | ||
print(f"An error occurred: {e}") | ||
return pd.DataFrame() | ||
|
||
|
||
def fetch_data_using_sql( | ||
sql_query: str, columns: list, rename_columns: dict | ||
) -> pd.DataFrame: | ||
""" | ||
Fetch data from the NESO API using an SQL query, process it, and return specific columns with renamed headers. | ||
Parameters: | ||
sql_query (str): The SQL query to fetch data from the API. | ||
columns (list): List of columns to extract from the data. | ||
rename_columns (dict): Dictionary for renaming columns in the DataFrame. | ||
Returns: | ||
pd.DataFrame: DataFrame containing the requested columns with renamed headers. | ||
Usage Example: | ||
>>> sql_query = 'SELECT * from "db6c038f-98af-4570-ab60-24d71ebd0ae5" LIMIT 5' | ||
>>> columns = ['DATE_GMT', 'TIME_GMT', 'EMBEDDED_SOLAR_FORECAST'] | ||
>>> rename_columns = { | ||
... 'DATE_GMT': 'start_utc', | ||
... 'TIME_GMT': 'end_utc', | ||
... 'EMBEDDED_SOLAR_FORECAST': 'solar_forecast_kw' | ||
... } | ||
>>> df = fetch_data_using_sql(sql_query, columns, rename_columns) | ||
""" | ||
|
||
base_url = "https://api.neso.energy/api/3/action/datastore_search_sql" | ||
encoded_query = urllib.parse.quote(sql_query) | ||
url = f"{base_url}?sql={encoded_query}" | ||
|
||
try: | ||
response = urllib.request.urlopen(url) | ||
data = json.loads(response.read().decode("utf-8")) | ||
|
||
records = data["result"]["records"] | ||
df = pd.DataFrame(records) | ||
|
||
df = df[columns] | ||
df.rename(columns=rename_columns, inplace=True) | ||
|
||
return df | ||
|
||
except Exception as e: | ||
print(f"An error occurred: {e}") | ||
return pd.DataFrame() | ||
|
||
|
||
def test_fetch_functions(): | ||
""" | ||
Test cases for the fetch_data and fetch_data_using_sql functions. | ||
Validates the functionality with different inputs and checks the correctness of the results. | ||
""" | ||
|
||
resource_id = "db6c038f-98af-4570-ab60-24d71ebd0ae5" | ||
limit = 5 | ||
columns = ["DATE_GMT", "TIME_GMT", "EMBEDDED_SOLAR_FORECAST"] | ||
rename_columns = { | ||
"DATE_GMT": "start_utc", | ||
"TIME_GMT": "end_utc", | ||
"EMBEDDED_SOLAR_FORECAST": "solar_forecast_kw", | ||
} | ||
|
||
sql_query = f'SELECT * from "{resource_id}" LIMIT {limit}' | ||
|
||
print("Testing fetch_data function...") | ||
df_api = fetch_data(resource_id, limit, columns, rename_columns) | ||
assert not df_api.empty, "fetch_data returned an empty DataFrame!" | ||
assert set(df_api.columns) == set( | ||
rename_columns.values() | ||
), "Column names do not match after renaming!" | ||
print("fetch_data passed the tests.") | ||
|
||
print("Testing fetch_data_using_sql function...") | ||
df_sql = fetch_data_using_sql(sql_query, columns, rename_columns) | ||
assert not df_sql.empty, "fetch_data_using_sql returned an empty DataFrame!" | ||
assert set(df_sql.columns) == set( | ||
rename_columns.values() | ||
), "Column names do not match after renaming!" | ||
print("fetch_data_using_sql passed the tests.") | ||
|
||
print("Validating data consistency between fetch_data and fetch_data_using_sql...") | ||
assert df_api.equals( | ||
df_sql | ||
), "Data from fetch_data and fetch_data_using_sql are inconsistent!" | ||
print("Data consistency test passed.") | ||
|
||
test_fetch_functions() |