Skip to content

Commit

Permalink
Add app.py and update .gitignore for Ruff and Pytest
Browse files Browse the repository at this point in the history
  • Loading branch information
siddharth7113 committed Dec 3, 2024
1 parent 405833a commit 250f3be
Show file tree
Hide file tree
Showing 2 changed files with 103 additions and 1 deletion.
5 changes: 4 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -15,4 +15,7 @@ dist/
.pytest_cache/

# Logs
*.log
*.log

# Ruff Cache
.ruff_cache/
99 changes: 99 additions & 0 deletions app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
"""
Main Script to Fetch, Format, and Save NESO Solar Forecast Data
This script orchestrates the following steps:
1. Fetches solar forecast data using the `fetch_data` function from `fetch_data.py`.
2. Formats the forecast data (currently a placeholder for future enhancements).
3. Saves the forecast data (currently a placeholder for future enhancements).
Each step is modularized into functions to allow for testing and future extension.
Functions:
- get_forecast: Fetches raw solar forecast data.
- format_forecast: Processes the forecast data for a specific format (placeholder for now).
- save_forecast: Saves the formatted forecast data (placeholder for now).
"""

from fetch_data import fetch_data


def get_forecast():
"""
Fetch solar forecast data from NESO API.
This function retrieves the solar forecast data from the NESO API and processes
it into a Pandas DataFrame using the `fetch_data` function.
Returns:
pd.DataFrame: A DataFrame containing solar forecast data with the following columns:
- `start_utc`: Start time of the forecast (UTC).
- `end_utc`: End time of the forecast (UTC).
- `solar_forecast_kw`: Forecasted solar energy in kW.
"""
resource_id = "example_resource_id" # Replace with the actual resource ID.
limit = 100 # Number of records to fetch.
columns = ["DATE_GMT", "TIME_GMT", "EMBEDDED_SOLAR_FORECAST"] # Relevant columns to extract.
rename_columns = {
"DATE_GMT": "start_utc",
"TIME_GMT": "end_utc",
"EMBEDDED_SOLAR_FORECAST": "solar_forecast_kw",
}

# Fetch and return data as a DataFrame.
return fetch_data(resource_id, limit, columns, rename_columns)


def format_forecast(data):
"""
Format solar forecast data.
Placeholder function for future enhancements. In its current form, it simply logs
a message and returns the input data unmodified.
Parameters:
data (pd.DataFrame): The raw forecast data fetched from the NESO API.
Returns:
pd.DataFrame: The formatted forecast data (currently identical to input data).
"""
print("Formatting forecast data...")
return data # Currently, no modifications are applied.


def save_forecast(data):
"""
Save solar forecast data.
Placeholder function for future enhancements. In its current form, it logs
a message but does not persist data.
Parameters:
data (pd.DataFrame): The formatted forecast data to be saved.
Returns:
None
"""
print("Saving forecast data...")
# Future implementation will save data to a database or file.


if __name__ == "__main__":
"""
Orchestrates the following steps:
1. Fetch forecast data.
2. Format forecast data.
3. Save forecast data.
"""
# Step 1: Get forecast data
print("Fetching forecast data...")
forecast_data = get_forecast()

# Step 2: Format forecast data
print("Formatting forecast data...")
formatted_data = format_forecast(forecast_data)

# Step 3: Save forecast data
print("Saving forecast data...")
save_forecast(formatted_data)

print("Process completed successfully!")

0 comments on commit 250f3be

Please sign in to comment.