-
-
Notifications
You must be signed in to change notification settings - Fork 51
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5bec075
commit 1db1bab
Showing
1 changed file
with
105 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
from typing import Tuple | ||
|
||
import torch | ||
import torch.nn as nn | ||
from timm.models.layers import trunc_normal_ | ||
|
||
|
||
class RelativeSelfAttention(nn.Module): | ||
"""Relative Self-Attention similar to Swin V1. Implementation taken from ChristophReich1996's MaxViT implementation.""" | ||
|
||
def __init__( | ||
self, | ||
in_channels: int, | ||
num_heads: int = 32, | ||
grid_window_size: Tuple[int, int] = (7, 7), | ||
attn_drop: float = 0.0, | ||
drop: float = 0.0, | ||
) -> None: | ||
super().__init__() | ||
|
||
self.in_channels: int = in_channels | ||
self.num_heads: int = num_heads | ||
self.grid_window_size: Tuple[int, int] = grid_window_size | ||
|
||
self.scale: float = num_heads**-0.5 | ||
self.attn_area: int = grid_window_size[0] * grid_window_size[1] | ||
|
||
# Init layers | ||
self.qkv_mapping = nn.Linear( | ||
in_features=in_channels, out_features=3 * in_channels, bias=True | ||
) | ||
self.attn_drop = nn.Dropout(p=attn_drop) | ||
self.proj = nn.Linear(in_features=in_channels, out_features=in_channels, bias=True) | ||
self.proj_drop = nn.Dropout(p=drop) | ||
self.softmax = nn.Softmax(dim=-1) | ||
|
||
# Define a parameter table of relative position bias, shape: 2*Wh-1 * 2*Ww-1, nH | ||
self.relative_position_bias_table = nn.Parameter( | ||
torch.zeros((2 * grid_window_size[0] - 1) * (2 * grid_window_size[1] - 1), num_heads) | ||
) | ||
|
||
# Get pair-wise relative position index for each token inside the window | ||
self.register_buffer( | ||
"relative_position_index", | ||
self.get_relative_position_index(grid_window_size[0], grid_window_size[1]), | ||
) | ||
# Init relative positional bias | ||
trunc_normal_(self.relative_position_bias_table, std=0.02) | ||
|
||
def get_relative_position_index(self, win_h: int, win_w: int) -> torch.Tensor: | ||
"""Function to generate pair-wise relative position index for each token inside the window. | ||
Taken from Timms Swin V1 implementation. | ||
Args: | ||
win_h (int): Window/Grid height. | ||
win_w (int): Window/Grid width. | ||
Returns: | ||
relative_coords (torch.Tensor): Pair-wise relative position indexes [height * width, height * width]. | ||
""" | ||
coords = torch.stack(torch.meshgrid([torch.arange(win_h), torch.arange(win_w)])) | ||
coords_flatten = torch.flatten(coords, 1) | ||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | ||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | ||
relative_coords[:, :, 0] += win_h - 1 | ||
relative_coords[:, :, 1] += win_w - 1 | ||
relative_coords[:, :, 0] *= 2 * win_w - 1 | ||
return relative_coords.sum(-1) | ||
|
||
def _get_relative_positional_bias(self) -> torch.Tensor: | ||
"""Returns the relative positional bias. | ||
Returns: | ||
relative_position_bias (torch.Tensor): Relative positional bias. | ||
""" | ||
relative_position_bias = self.relative_position_bias_table[ | ||
self.relative_position_index.view(-1) | ||
].view(self.attn_area, self.attn_area, -1) | ||
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() | ||
return relative_position_bias.unsqueeze(0) | ||
|
||
def forward(self, input: torch.Tensor) -> torch.Tensor: | ||
"""Forward pass. | ||
Args: | ||
input (torch.Tensor): Input tensor of the shape [B_, N, C]. | ||
Returns: | ||
output (torch.Tensor): Output tensor of the shape [B_, N, C]. | ||
""" | ||
# Get shape of input | ||
B_, N, C = input.shape | ||
# Perform query key value mapping | ||
qkv = self.qkv_mapping(input).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | ||
q, k, v = qkv.unbind(0) | ||
# Scale query | ||
q = q * self.scale | ||
# Compute attention maps | ||
attn = self.softmax(q @ k.transpose(-2, -1) + self._get_relative_positional_bias()) | ||
# Map value with attention maps | ||
output = (attn @ v).transpose(1, 2).reshape(B_, N, -1) | ||
# Perform final projection and dropout | ||
output = self.proj(output) | ||
output = self.proj_drop(output) | ||
return output |