-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
122 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import json | ||
import math | ||
import os | ||
import os.path as osp | ||
|
||
import cv2 | ||
import numpy as np | ||
|
||
|
||
def default_dump(obj): | ||
"""Convert numpy classes to JSON serializable objects.""" | ||
if isinstance(obj, (np.integer, np.floating, np.bool_)): | ||
return obj.item() | ||
elif isinstance(obj, np.ndarray): | ||
return obj.tolist() | ||
else: | ||
return obj | ||
|
||
|
||
def convert_wflw_to_coco(ann_file, out_file): | ||
annotations = [] | ||
images = [] | ||
files = [] | ||
cnt = 0 | ||
image_cnt = 0 | ||
|
||
data_infos = open(ann_file).readlines() | ||
data_infos = [x.strip().split() for x in data_infos] | ||
for data in data_infos: | ||
file_name = data[-1] | ||
img_path = osp.join('data/wflw/WFLW_images', file_name) | ||
img = cv2.imread(img_path) | ||
|
||
keypoints = [] | ||
|
||
coordinates = [data[i:i + 2] for i in range(0, 196, 2)] | ||
|
||
for coordinate in coordinates: | ||
x, y = coordinate[0], coordinate[1] | ||
x, y = float(x), float(y) | ||
keypoints.append([x, y, 1]) | ||
keypoints = np.array(keypoints) | ||
|
||
x1, y1, _ = np.amin(keypoints, axis=0) | ||
x2, y2, _ = np.amax(keypoints, axis=0) | ||
w, h = x2 - x1, y2 - y1 | ||
scale = math.ceil(max(w, h)) / 200 | ||
w_new = w / scale | ||
h_new = h / scale | ||
center = [(x1 + x2) / 2, (y1 + y2) / 2] | ||
x1_new = center[0] - w_new / 2 | ||
y1_new = center[1] - h_new / 2 | ||
bbox = [x1_new, y1_new, w_new, h_new] | ||
|
||
image = {} | ||
# check if the image already exists | ||
if file_name in files: | ||
image = images[files.index(file_name)] | ||
else: | ||
image['id'] = image_cnt | ||
image['file_name'] = f'{file_name}' | ||
image['height'] = img.shape[0] | ||
image['width'] = img.shape[1] | ||
image_cnt = image_cnt + 1 | ||
files.append(file_name) | ||
images.append(image) | ||
|
||
ann = {} | ||
ann['keypoints'] = keypoints.reshape(-1).tolist() | ||
ann['image_id'] = image['id'] | ||
ann['id'] = cnt | ||
ann['num_keypoints'] = len(keypoints) | ||
ann['bbox'] = bbox | ||
ann['is_crowd'] = 0 | ||
ann['area'] = w * h | ||
ann['category_id'] = 1 | ||
ann['center'] = center | ||
ann['scale'] = scale | ||
annotations.append(ann) | ||
cnt = cnt + 1 | ||
|
||
cocotype = {} | ||
cocotype['images'] = images | ||
cocotype['annotations'] = annotations | ||
cocotype['categories'] = [{ | ||
'supercategory': 'person', | ||
'id': 1, | ||
'name': 'face', | ||
'keypoints': [], | ||
'skeleton': [] | ||
}] | ||
|
||
json.dump( | ||
cocotype, | ||
open(out_file, 'w'), | ||
ensure_ascii=False, | ||
default=default_dump) | ||
print(f'done {out_file}') | ||
|
||
|
||
if __name__ == '__main__': | ||
if not osp.exists('data/wflw/annotations'): | ||
os.makedirs('data/wflw/annotations') | ||
root_folder = 'data/wflw' | ||
ann_folder = f'{root_folder}/WFLW_annotations' | ||
for root, dirs, files in os.walk(ann_folder): | ||
for file in files: | ||
if not file.endswith('txt'): | ||
continue | ||
print(f'Processing {file}') | ||
sub_class = file.split('_')[-1].replace('.txt', '') | ||
if sub_class != 'train' and sub_class != 'test': | ||
out_file = f'face_landmarks_wflw_test_{sub_class}.json' | ||
else: | ||
out_file = f'face_landmarks_wflw_{sub_class}.json' | ||
convert_wflw_to_coco(f'{root}/{file}', | ||
f'{root_folder}/annotations/{out_file}') |