Skip to content

nv-jinhosuh/pp

 
 

Repository files navigation

Introduction

This repository is an implementation of PointPainting on the Waymo Open Dataset.

Dataset

Download v1.4.1 of the Waymo Open Dataset following the instruction. Format the segments under the following folder structure.

waymo
    |- waymo_format
        |- training
        |- validation

Environment

Create a conda environment

  conda create -n pp python=3.10
  conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
  conda install tqdm
  conda install numba==0.57
  pip install opencv-python
  pip install open3d
  pip install tensorboard
  pip install waymo-open-dataset-tf-2-11-0==1.6.1

Alternateivly use the 2 provided docker containers. convert.dockerfile is for converting the dataset to the KITTI format. All other operations can be performed using the main container Dockerfile.

Compile ops

    conda activate pp
    cd ops
    python setup.py develop

Preparing the Dataset

First convert the dataset to the KITTI format. This will create a kitti_format folder under your waymo directory.

  cd data_prep
  python convert_data.py --waymo_root [path/to/waymo]

Next paint the lidar points using a trained segmentation model.

cd painting
python painting.py --training_path [path/to/waymo]/kitti_format/training/ --model_path [path/to/segmentation/model]

Create the info file used for training

  cd data_prep
  python create_info.py --waymo_root [path/to/waymo] --painted

Training

To train on painted lidar points.

  conda activate pp
  torchrun --nproc_per_node=[gpus] train.py --data_root [path/to/waymo]/kitti_format/  --painted --cam_sync --saved_path [checkpoint/path] --max_epoch [num of epochs] --ckpt_freq_epoch [freq]

Evaluation

To evaluate the mAP.

conda activate pp
python evaluate.py --ckpt [checkpoint/path] --data_root [path/to/waymo]/kitti_format/ --painted --cam_sync

To perform inference

conda activate pp
python inference.py --data_root [path/to/waymo]/kitti_format --lidar_detector [pointpillars/checkpoint/path] --segmentor [deeplab/checkpoint/path] --painted --cam_sync

Acknowledements

This repository makes use of the open source from PointPillars, MMDet3D, DeepLabV3Plus-Pytorch, and PointPainting.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 92.3%
  • Cuda 5.2%
  • C++ 2.4%
  • Dockerfile 0.1%