Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Altered IRR function to accept 2D-array #122

Merged
merged 9 commits into from
May 7, 2024
109 changes: 62 additions & 47 deletions numpy_financial/_financial.py
Original file line number Diff line number Diff line change
Expand Up @@ -709,7 +709,27 @@ def rate(
return rn


def irr(values, *, raise_exceptions=False):
def _irr_default_selection(eirr):
""" default selection logic for IRR function when there are > 1 real solutions """
# check sign of all IRR solutions
same_sign = np.all(eirr > 0) if eirr[0] > 0 else np.all(eirr < 0)

# if the signs of IRR solutions are not the same, first filter potential IRR
# by comparing the total positive and negative cash flows.
if not same_sign:
pos = sum(eirr[eirr > 0])
neg = sum(eirr[eirr < 0])
if pos >= neg:
eirr = eirr[eirr >= 0]
else:
eirr = eirr[eirr < 0]

# pick the smallest one in magnitude and return
abs_eirr = np.abs(eirr)
return eirr[np.argmin(abs_eirr)]


def irr(values, *, raise_exceptions=False, selection_logic=_irr_default_selection):
r"""Return the Internal Rate of Return (IRR).

This is the "average" periodically compounded rate of return
Expand All @@ -731,6 +751,12 @@ def irr(values, *, raise_exceptions=False):
having reached the maximum number of iterations (IterationsExceededException).
Set to False as default, thus returning NaNs in the two previous
cases.
selection_logic: function, optional
Function for selection logic when more than 1 real solutions is found.
User may insert their own customised function for selection
of IRR values.The function should accept a one-dimensional array
of numbers and return a number.


Returns
-------
Expand Down Expand Up @@ -775,20 +801,24 @@ def irr(values, *, raise_exceptions=False):
0.06206
>>> round(npf.irr([-5, 10.5, 1, -8, 1]), 5)
0.0886

>>> npf.irr([[-100, 0, 0, 74], [-100, 100, 0, 7]]).round(5)
array([-0.0955 , 0.06206])

"""
values = np.atleast_1d(values)
if values.ndim != 1:
raise ValueError("Cashflows must be a rank-1 array")

# If all values are of the same sign no solution exists
# we don't perform any further calculations and exit early
same_sign = np.all(values > 0) if values[0] > 0 else np.all(values < 0)
if same_sign:
if raise_exceptions:
raise NoRealSolutionError('No real solution exists for IRR since all '
'cashflows are of the same sign.')
return np.nan
values = np.atleast_2d(values)
if values.ndim not in [1, 2]:
raise ValueError("Cashflows must be a 2D array")
Kai-Striega marked this conversation as resolved.
Show resolved Hide resolved

irr_results = np.empty(values.shape[0])
for i, row in enumerate(values):
# If all values are of the same sign, no solution exists
# We don't perform any further calculations and exit early
same_sign = np.all(row > 0) if row[0] > 0 else np.all(row < 0)
if same_sign:
if raise_exceptions:
raise NoRealSolutionError('No real solution exists for IRR since all '
'cashflows are of the same sign.')
irr_results[i] = np.nan

# We aim to solve eirr such that NPV is exactly zero. This can be framed as
# simply finding the closest root of a polynomial to a given initial guess
Expand All @@ -807,40 +837,25 @@ def irr(values, *, raise_exceptions=False):
#
# which we solve using Newton-Raphson and then reverse out the solution
# as eirr = g - 1 (if we are close enough to a solution)

g = np.roots(values)
eirr = np.real(g[np.isreal(g)]) - 1

# realistic IRR
eirr = eirr[eirr>=-1]

# if no real solution
if len(eirr) == 0:
if raise_exceptions:
raise NoRealSolutionError("No real solution is found for IRR.")
return np.nan

# if only one real solution
if len(eirr) == 1:
return eirr[0]

# below is for the situation when there are more than 2 real solutions.
# check sign of all IRR solutions
same_sign = np.all(eirr > 0) if eirr[0] > 0 else np.all(eirr < 0)

# if the signs of IRR solutions are not the same, first filter potential IRR
# by comparing the total positive and negative cash flows.
if not same_sign:
pos = sum(values[values>0])
neg = sum(values[values<0])
if pos >= neg:
eirr = eirr[eirr>=0]
else:
eirr = eirr[eirr<0]

# pick the smallest one in magnitude and return
abs_eirr = np.abs(eirr)
return eirr[np.argmin(abs_eirr)]
g = np.roots(row)
eirr = np.real(g[np.isreal(g)]) - 1

# Realistic IRR
eirr = eirr[eirr >= -1]

# If no real solution
if len(eirr) == 0:
if raise_exceptions:
raise NoRealSolutionError("No real solution is found for IRR.")
irr_results[i] = np.nan
# If only one real solution
elif len(eirr) == 1:
irr_results[i] = eirr[0]
else:
irr_results[i] = selection_logic(eirr)

return _ufunc_like(irr_results)


def npv(rate, values):
Expand Down
Loading