Skip to content

Commit

Permalink
Merge pull request #122 from Eugenia-Mazur/irr_2d_array
Browse files Browse the repository at this point in the history
Altered IRR function to accept 2D-array
  • Loading branch information
Kai-Striega authored May 7, 2024
2 parents 5c66fb0 + a00ab5f commit 3f67c27
Showing 1 changed file with 62 additions and 47 deletions.
109 changes: 62 additions & 47 deletions numpy_financial/_financial.py
Original file line number Diff line number Diff line change
Expand Up @@ -709,7 +709,27 @@ def rate(
return rn


def irr(values, *, raise_exceptions=False):
def _irr_default_selection(eirr):
""" default selection logic for IRR function when there are > 1 real solutions """
# check sign of all IRR solutions
same_sign = np.all(eirr > 0) if eirr[0] > 0 else np.all(eirr < 0)

# if the signs of IRR solutions are not the same, first filter potential IRR
# by comparing the total positive and negative cash flows.
if not same_sign:
pos = sum(eirr[eirr > 0])
neg = sum(eirr[eirr < 0])
if pos >= neg:
eirr = eirr[eirr >= 0]
else:
eirr = eirr[eirr < 0]

# pick the smallest one in magnitude and return
abs_eirr = np.abs(eirr)
return eirr[np.argmin(abs_eirr)]


def irr(values, *, raise_exceptions=False, selection_logic=_irr_default_selection):
r"""Return the Internal Rate of Return (IRR).
This is the "average" periodically compounded rate of return
Expand All @@ -731,6 +751,12 @@ def irr(values, *, raise_exceptions=False):
having reached the maximum number of iterations (IterationsExceededException).
Set to False as default, thus returning NaNs in the two previous
cases.
selection_logic: function, optional
Function for selection logic when more than 1 real solutions is found.
User may insert their own customised function for selection
of IRR values.The function should accept a one-dimensional array
of numbers and return a number.
Returns
-------
Expand Down Expand Up @@ -775,20 +801,24 @@ def irr(values, *, raise_exceptions=False):
0.06206
>>> round(npf.irr([-5, 10.5, 1, -8, 1]), 5)
0.0886
>>> npf.irr([[-100, 0, 0, 74], [-100, 100, 0, 7]]).round(5)
array([-0.0955 , 0.06206])
"""
values = np.atleast_1d(values)
if values.ndim != 1:
raise ValueError("Cashflows must be a rank-1 array")

# If all values are of the same sign no solution exists
# we don't perform any further calculations and exit early
same_sign = np.all(values > 0) if values[0] > 0 else np.all(values < 0)
if same_sign:
if raise_exceptions:
raise NoRealSolutionError('No real solution exists for IRR since all '
'cashflows are of the same sign.')
return np.nan
values = np.atleast_2d(values)
if values.ndim != 2:
raise ValueError("Cashflows must be a 2D array")

irr_results = np.empty(values.shape[0])
for i, row in enumerate(values):
# If all values are of the same sign, no solution exists
# We don't perform any further calculations and exit early
same_sign = np.all(row > 0) if row[0] > 0 else np.all(row < 0)
if same_sign:
if raise_exceptions:
raise NoRealSolutionError('No real solution exists for IRR since all '
'cashflows are of the same sign.')
irr_results[i] = np.nan

# We aim to solve eirr such that NPV is exactly zero. This can be framed as
# simply finding the closest root of a polynomial to a given initial guess
Expand All @@ -807,40 +837,25 @@ def irr(values, *, raise_exceptions=False):
#
# which we solve using Newton-Raphson and then reverse out the solution
# as eirr = g - 1 (if we are close enough to a solution)

g = np.roots(values)
eirr = np.real(g[np.isreal(g)]) - 1

# realistic IRR
eirr = eirr[eirr>=-1]

# if no real solution
if len(eirr) == 0:
if raise_exceptions:
raise NoRealSolutionError("No real solution is found for IRR.")
return np.nan

# if only one real solution
if len(eirr) == 1:
return eirr[0]

# below is for the situation when there are more than 2 real solutions.
# check sign of all IRR solutions
same_sign = np.all(eirr > 0) if eirr[0] > 0 else np.all(eirr < 0)

# if the signs of IRR solutions are not the same, first filter potential IRR
# by comparing the total positive and negative cash flows.
if not same_sign:
pos = sum(values[values>0])
neg = sum(values[values<0])
if pos >= neg:
eirr = eirr[eirr>=0]
else:
eirr = eirr[eirr<0]

# pick the smallest one in magnitude and return
abs_eirr = np.abs(eirr)
return eirr[np.argmin(abs_eirr)]
g = np.roots(row)
eirr = np.real(g[np.isreal(g)]) - 1

# Realistic IRR
eirr = eirr[eirr >= -1]

# If no real solution
if len(eirr) == 0:
if raise_exceptions:
raise NoRealSolutionError("No real solution is found for IRR.")
irr_results[i] = np.nan
# If only one real solution
elif len(eirr) == 1:
irr_results[i] = eirr[0]
else:
irr_results[i] = selection_logic(eirr)

return _ufunc_like(irr_results)


def npv(rate, values):
Expand Down

0 comments on commit 3f67c27

Please sign in to comment.