Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
eeholmes committed May 2, 2024
2 parents 46d873d + f0338e9 commit 3c8cfa3
Showing 1 changed file with 66 additions and 41 deletions.
107 changes: 66 additions & 41 deletions tutorials/r/3-extract-satellite-data-within-boundary.qmd
Original file line number Diff line number Diff line change
@@ -1,14 +1,13 @@
---
title: Extract data within a boundary
author: NOAA CoastWatch
author: NOAA CoastWatch, NOAA Openscapes
---

::: {.callout-note title="Learning Objectives"}

1. How to access and download sea surface temperature from NASA Earthdata
2. How to trim satellite data to specific bounding coordinates
3. How to cropped satellite data
4. How to apply shapefiles as masks to satellite data
1. How to access and download sea surface temperature from NASA Earthdata
2. How to apply shapefiles as masks to satellite data
3. How to compute monthly average sea surface temperature
:::


Expand Down Expand Up @@ -44,9 +43,6 @@ only takes a moment to set up.

*Note: See the set-up tab (in left nav bar) for instructions on getting set up on your own computer.*

# Extract data within a boundary



## Datasets used
__GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS2) from NCEI__
Expand All @@ -72,7 +68,7 @@ For this exercise we will use the Gulf Stream province (ProvCode: GFST)
library(terra)
library(earthdatalogin)
library(sf)
library(ggplot2)
```


Expand Down Expand Up @@ -101,12 +97,11 @@ ycoord <- st_coordinates(GFST)[,2]
```

## Search data with the dataset unique name and coordinates/dates
## Search data from NASA Earthdata with the dataset unique name and coordinates/dates

```{r}
# Connect to NASA Earthdata with no credentials
edl_netrc()
```

```{r}
Expand All @@ -133,60 +128,90 @@ length(results)

There are `r length(results)` files.

## Crop and plot one image

## Apply shapefiles as mask to satellite data


```{r}
# Select the first result
ras <- terra::rast(results[1], vsi = TRUE)
# Set boundaries to crop
e <- ext(c(min(xcoord), max(xcoord), min(ycoord), max(ycoord)))
# Extract SST from the multi-layer raster data
ras_sst <- rc[["analysed_sst"]]
# Crop the result
rc <- terra::crop(ras, e)
```
# Vectorize shapes
shp <- vect(shapes)
This has the following layers.
```{r}
# Get boundaries for GFST
GFST <- shp[shp$ProvCode == "GFST",]
# Plot the SST data
plot(ras_sst)
# Plot GFST boundaries from shapefile
plot(GFST,col='red')
# Examine variable names
names(rc)
# Mask SST with the GFST boundaries
masked_rc <- mask(ras_sst, GFST)
# Examine the raster data
rc
# Visualize the SST in GFST Province
plot(masked_rc)
```


## Apply a mask
## Compute monthly average of SST

Apply mask to a terra raster.
We will construct a data cube to compute monthly average for sea surface
temperature data within the boundary.

https://rdrr.io/cran/terra/man/mask.html
To minimize data loading times, the first 10 results, which correspond to
approximately two months of data, will be used for this exercise.


```{r}
# Extract SST from the multi-layer raster data
rc_sst <- rc[["analysed_sst"]]
# Select the first 10 SST results
ras_all <- terra::rast(results[c(1:10)], vsi = TRUE)
# Trim the SST data to the boundaries of GFST
rc_all <- terra::mask(ras_all, GFST)
# Vectorize shapes
shp <- vect(shapes)
# SST data
rc_sst <- rc_all["analysed_sst", ]
# Get boundaries for GFST
GFST <- shp[shp$ProvCode == "GFST",]
# Function to convert times to year-month format
year_month <- function(x) {
format(as.Date(time(x), format="%Y-%m-%d"), "%Y-%m")
}
# Plot the SST data
plot(rc_sst)
# Convert time to Year-month format for aggregation
ym <- year_month(rc_all)
# Show GFST boundaries from shapefile
plot(GFST,col='red')
# Compute raster mean grouped by Year-month
monthly_mean_rast <- terra::tapp(rc_all, ym, fun = mean)
# Mask SST with the GFST boundarires
masked_rc <- mask(rc_sst, GFST)
# Compute mean across raster grouped by Year-month
monthly_means <- global(monthly_mean_rast, fun = mean)
```

# Visualize the SST in GFST
plot(masked_rc)
## Convert raster into data frame
```{r}
# Convert raster into data.frame
monthly_means_df <- as.data.frame(monthly_means)
# Convert year_month to a column
monthly_means_df$year_month <- sub("X", "", rownames(monthly_means_df))
```
## Plot monthly mean of sea surface temperature within GFST province

```{r}
# Plot monthly mean
ggplot(data = monthly_means_df, aes(x = year_month, y = mean, group = 1)) +
geom_line() +
geom_point() +
xlab("Year.Month") +
ylab("Mean SST (F)")
```

0 comments on commit 3c8cfa3

Please sign in to comment.