- This is a multi-class text classification (sentence classification) problem.
- The goal of this project is to classify Kaggle San Francisco Crime Description into 39 classes.
- This model was built with CNN, RNN (LSTM and GRU) and Word Embeddings on Tensorflow.
-
Input: Descript
-
Output: Category
-
Examples:
Descript Category GRAND THEFT FROM LOCKED AUTO LARCENY/THEFT POSSESSION OF NARCOTICS PARAPHERNALIA DRUG/NARCOTIC AIDED CASE, MENTAL DISTURBED NON-CRIMINAL AGGRAVATED ASSAULT WITH BODILY FORCE ASSAULT ATTEMPTED ROBBERY ON THE STREET WITH A GUN ROBBERY
- Command: python3 train.py train_data.file train_parameters.json
- Example:
python3 train.py ./data/train.csv.zip ./training_config.json
- Command: python3 predict.py ./trained_results_dir/ new_data.csv
- Example:
python predict.py ./trained_results_1554545002/ ./data/small_samples.csv
https://www.youtube.com/results?search_query=flask+tensorflow+classification
pip install paramiko"#- Example: !python train.py train.csv.zip training_config.json
"
"#- !wget [email protected]:niranjan8129/classification_tensorflow.git for download "