Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add awq moe #13

Merged
merged 8 commits into from
Oct 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions tests/weight_loading/models-large.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,3 +3,4 @@ compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-channel-quantize
compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W8A16-quantized, main
compressed-tensors, mgoin/DeepSeek-Coder-V2-Lite-Instruct-FP8, main
gptq_marlin, TheBloke/Mixtral-8x7B-v0.1-GPTQ, main
awq_marlin, casperhansen/deepseek-coder-v2-instruct-awq, main
14 changes: 14 additions & 0 deletions vllm/_custom_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -559,6 +559,20 @@ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
return output


def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
size_k: int, size_n: int,
num_bits: int) -> torch.Tensor:
num_experts = b_q_weight.shape[0]
assert size_k % 16 == 0
output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
device=b_q_weight.device,
dtype=b_q_weight.dtype)
for e in range(num_experts):
output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k,
size_n, num_bits)
return output


def gptq_marlin_gemm(a: torch.Tensor,
b_q_weight: torch.Tensor,
b_scales: torch.Tensor,
Expand Down
204 changes: 195 additions & 9 deletions vllm/model_executor/layers/quantization/awq_marlin.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,21 @@
from typing import Any, Dict, List, Optional
from typing import Any, Callable, Dict, List, Optional

import torch
from torch.nn import Parameter

from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported)
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.utils import replace_parameter
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
apply_awq_marlin_linear, awq_to_marlin_zero_points, check_marlin_supported,
marlin_make_empty_g_idx, marlin_make_workspace, marlin_permute_scales,
marlin_make_empty_g_idx, marlin_make_workspace, marlin_moe_permute_scales,
marlin_permute_scales, moe_awq_to_marlin_zero_points,
verify_marlin_supported, verify_marlin_supports_shape)
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.parameter import (GroupQuantScaleParameter,
Expand All @@ -35,12 +40,13 @@ def __init__(self, weight_bits: int, group_size: int, has_zp: bool,
self.group_size = group_size
self.has_zp = has_zp
self.lm_head_quantized = lm_head_quantized
self.weight_bits = weight_bits

if weight_bits not in self.TYPE_MAP:
raise ValueError(f"Unsupported num_bits = {weight_bits}. "
if self.weight_bits not in self.TYPE_MAP:
raise ValueError(f"Unsupported num_bits = {self.weight_bits}. "
f"Supported num_bits = {self.TYPE_MAP.keys()}")

self.quant_type = self.TYPE_MAP[weight_bits]
self.quant_type = self.TYPE_MAP[self.weight_bits]

verify_marlin_supported(self.quant_type,
group_size=self.group_size,
Expand Down Expand Up @@ -98,10 +104,12 @@ def override_quantization_method(cls, hf_quant_cfg,
return None

def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["AWQMarlinLinearMethod"]:
prefix: str) -> Optional["QuantizeMethodBase"]:
if (isinstance(layer, LinearBase) or
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
return AWQMarlinLinearMethod(self)
elif isinstance(layer, FusedMoE):
return AWQMoEMethod(self)
return None

def get_scaled_act_names(self) -> List[str]:
Expand Down Expand Up @@ -271,4 +279,182 @@ def apply(
quant_type=self.quant_config.quant_type,
output_size_per_partition=layer.output_size_per_partition,
input_size_per_partition=layer.input_size_per_partition,
bias=bias)
bias=bias)


class AWQMoEMethod(FusedMoEMethodBase):

def __init__(self, quant_config: AWQMarlinConfig):
self.quant_config = quant_config

def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size: int,
params_dtype: torch.dtype, **extra_weight_attrs):
extra_weight_attrs.update({
"is_transposed":
True,
"quant_method":
FusedMoeWeightScaleSupported.GROUP.value,
})

w13_qweight = Parameter(torch.empty(num_experts,
hidden_size,
2 * intermediate_size //
self.quant_config.pack_factor,
dtype=torch.int32),
requires_grad=False)
layer.register_parameter("w13_qweight", w13_qweight)
set_weight_attrs(w13_qweight, extra_weight_attrs)

w2_qweight = Parameter(torch.empty(num_experts,
intermediate_size,
hidden_size //
self.quant_config.pack_factor,
dtype=torch.int32),
requires_grad=False)
layer.register_parameter("w2_qweight", w2_qweight)
set_weight_attrs(w2_qweight, extra_weight_attrs)

num_groups_w13 = hidden_size // self.quant_config.group_size
num_groups_w2 = intermediate_size // self.quant_config.group_size

# WEIGHT_SCALES
# Allocate 2 scales for w1 and w3 respectively.
w13_scales = Parameter(torch.empty(num_experts,
num_groups_w13,
intermediate_size * 2,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_scales", w13_scales)
set_weight_attrs(w13_scales, extra_weight_attrs)

w2_scales = Parameter(torch.empty(num_experts,
num_groups_w2,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_scales", w2_scales)
set_weight_attrs(w2_scales, extra_weight_attrs)

# WEIGHT_ZERO_POINT
# Allocate 2 zero points for w1 and w3 respectively.
w13_qzeros = Parameter(torch.empty(num_experts,
num_groups_w13,
2 * intermediate_size //
self.quant_config.pack_factor,
dtype=torch.int32),
requires_grad=False)
layer.register_parameter("w13_qzeros", w13_qzeros)
set_weight_attrs(w13_qzeros, extra_weight_attrs)

w2_qzeros = Parameter(torch.empty(num_experts,
num_groups_w2,
hidden_size //
self.quant_config.pack_factor,
dtype=torch.int32),
requires_grad=False)
layer.register_parameter("w2_qzeros", w2_qzeros)
set_weight_attrs(w2_qzeros, extra_weight_attrs)

def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
num_experts = layer.w13_qweight.shape[0]
device = layer.w13_qweight.device

layer.w13_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
requires_grad=False,
)
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
requires_grad=False,
)

marlin_w13_qweight = ops.awq_marlin_moe_repack(
layer.w13_qweight,
layer.w13_g_idx_sort_indices,
size_k=layer.w13_qweight.shape[1],
size_n=layer.w13_qweight.shape[2] * self.quant_config.pack_factor,
num_bits=self.quant_config.weight_bits,
)
replace_parameter(layer, "w13_qweight", marlin_w13_qweight)

marlin_w2_qweight = ops.awq_marlin_moe_repack(
layer.w2_qweight,
layer.w2_g_idx_sort_indices,
size_k=layer.w2_qweight.shape[1],
size_n=layer.w2_qweight.shape[2] * self.quant_config.pack_factor,
num_bits=self.quant_config.weight_bits,
)
replace_parameter(layer, "w2_qweight", marlin_w2_qweight)

# Why does this take the intermediate size for size_k?
marlin_w13_scales = marlin_moe_permute_scales(
s=layer.w13_scales,
size_k=layer.intermediate_size_per_partition,
size_n=layer.w13_scales.shape[2],
group_size=self.quant_config.group_size,
)

replace_parameter(layer, "w13_scales", marlin_w13_scales)

marlin_w2_scales = marlin_moe_permute_scales(
s=layer.w2_scales,
size_k=layer.intermediate_size_per_partition,
size_n=layer.w2_scales.shape[2],
group_size=self.quant_config.group_size,
)
replace_parameter(layer, "w2_scales", marlin_w2_scales)

marlin_w13_zp = moe_awq_to_marlin_zero_points(
layer.w13_qzeros,
size_k=layer.w13_qzeros.shape[1],
size_n=layer.w13_qzeros.shape[2] * self.quant_config.pack_factor,
num_bits=self.quant_config.weight_bits)
replace_parameter(layer, "w13_qzeros", marlin_w13_zp)

marlin_w2_zp = moe_awq_to_marlin_zero_points(
layer.w2_qzeros,
size_k=layer.w2_qzeros.shape[1],
size_n=layer.w2_qzeros.shape[2] * self.quant_config.pack_factor,
num_bits=self.quant_config.weight_bits)
replace_parameter(layer, "w2_qzeros", marlin_w2_zp)

def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool = True,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
) -> torch.Tensor:

from vllm.model_executor.layers.fused_moe.fused_marlin_moe import (
fused_marlin_moe)

topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function)

return fused_marlin_moe(
x,
layer.w13_qweight,
layer.w2_qweight,
layer.w13_scales,
layer.w2_scales,
router_logits,
topk_weights,
topk_ids,
w1_zeros=layer.w13_qzeros,
w2_zeros=layer.w2_qzeros,
num_bits=self.quant_config.weight_bits,
)
15 changes: 15 additions & 0 deletions vllm/model_executor/layers/quantization/utils/marlin_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,6 +208,7 @@ def marlin_moe_permute_scales(
device=s.device,
dtype=s.dtype,
)

for e in range(num_experts):
output[e] = marlin_permute_scales(s[e], size_k, size_n, group_size)
return output
Expand Down Expand Up @@ -258,6 +259,20 @@ def awq_to_marlin_zero_points(q_zp_packed: torch.Tensor, size_k: int,
return marlin_zp


def moe_awq_to_marlin_zero_points(q_zp_packed: torch.Tensor, size_k: int,
size_n: int, num_bits: int):
num_experts = q_zp_packed.shape[0]
output = torch.empty(
(num_experts, q_zp_packed.shape[1], q_zp_packed.shape[2]),
device=q_zp_packed.device,
dtype=q_zp_packed.dtype,
)
for e in range(num_experts):
output[e] = awq_to_marlin_zero_points(q_zp_packed[e], size_k, size_n,
num_bits)
return output


def apply_gptq_marlin_linear(
input: torch.Tensor,
weight: torch.Tensor,
Expand Down
4 changes: 3 additions & 1 deletion vllm/model_executor/model_loader/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,9 @@ def get_model_architecture(
architectures = getattr(model_config.hf_config, "architectures", [])
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
mixtral_supported = ["fp8", "compressed-tensors", "gptq_marlin"]
mixtral_supported = [
"fp8", "compressed-tensors", "gptq_marlin", "awq_marlin"
]

if (model_config.quantization is not None
and model_config.quantization not in mixtral_supported
Expand Down