Skip to content

Commit

Permalink
[Misc] Enhance prefix-caching benchmark tool (vllm-project#6568)
Browse files Browse the repository at this point in the history
  • Loading branch information
Jeffwan authored Aug 22, 2024
1 parent cc0eaf1 commit d3b5b98
Showing 1 changed file with 140 additions and 4 deletions.
144 changes: 140 additions & 4 deletions benchmarks/benchmark_prefix_caching.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,45 @@
"""
Benchmark the efficiency of prefix caching.
This script allows you to benchmark the performance of
a model with and without prefix caching using either fixed prompts
or prompts sampled from the ShareGPT dataset.
Fixed example usage:
python benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100
ShareGPT example usage:
# This command samples 20 prompts with input lengths
# between 128 and 256 tokens from the ShareGPT dataset,
# then replicates each prompt 5 times.
python benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-path /path/to/ShareGPT_V3_unfiltered_cleaned_split.json \
--enable-prefix-caching \
--num-prompts 20 \
--repeat-count 5 \
--input-length-range 128:256
"""

import json
import random
import time
from typing import List, Optional, Tuple

from transformers import PreTrainedTokenizerBase

from vllm import LLM, SamplingParams
from vllm.utils import FlexibleArgumentParser

try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
from backend_request_func import get_tokenizer

PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501


Expand All @@ -15,7 +52,83 @@ def test_prefix(llm=None, sampling_params=None, prompts=None):
print(f"cost time {end_time - start_time}")


def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")

# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]

# Shuffle the dataset.
random.shuffle(dataset)

min_len, max_len = input_length_range

# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break

# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if min_len <= prompt_len <= max_len:
filtered_dataset.append((prompt, prompt_len, output_len))

return filtered_dataset


def repeat_and_sort_requests(requests: List[Tuple[str, int, int]],
repeat_count: int,
sort: bool = False) -> List[str]:
repeated_requests = requests * repeat_count
if sort:
repeated_requests.sort(key=lambda x: x[1])
else:
random.shuffle(repeated_requests)
return [req[0] for req in repeated_requests]


def main(args):
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
input_length_range = tuple(map(int, args.input_length_range.split(':')))

if args.dataset_path is not None:
print(f"Start to sample {args.num_prompts} prompts"
"from {args.dataset_path}")
filtered_datasets = sample_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
input_length_range=input_length_range,
fixed_output_len=args.output_len,
)
else:
prompt_len = len(tokenizer(PROMPT).input_ids)
filtered_datasets = [(PROMPT, prompt_len, args.output_len)
] * args.num_prompts

llm = LLM(model=args.model,
tokenizer_mode='auto',
trust_remote_code=True,
Expand All @@ -24,10 +137,13 @@ def main(args):
tensor_parallel_size=args.tensor_parallel_size,
enable_prefix_caching=args.enable_prefix_caching)

num_prompts = 100
prompts = [PROMPT] * num_prompts
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)

print("Testing filtered datasets")
prompts = repeat_and_sort_requests(filtered_datasets,
repeat_count=args.repeat_count,
sort=args.sort)

print("------warm up------")
test_prefix(
llm=llm,
Expand All @@ -45,11 +161,15 @@ def main(args):

if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the performance with or without automatic '
'prefix caching.')
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument('--model',
type=str,
default='baichuan-inc/Baichuan2-13B-Chat')
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
Expand All @@ -58,5 +178,21 @@ def main(args):
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
parser.add_argument('--num-prompts',
type=int,
default=1,
help="Number of the prompts sampled from dataset")
parser.add_argument('--repeat-count',
type=int,
default=100,
help='Number of times to repeat each prompt')
parser.add_argument('--sort',
action='store_true',
help='Sort prompts by input length')
parser.add_argument('--input-length-range',
type=str,
default='128:256',
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
args = parser.parse_args()
main(args)

0 comments on commit d3b5b98

Please sign in to comment.