-
Notifications
You must be signed in to change notification settings - Fork 488
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #25 from MysteryVaibhav/master
Adding pytorch code for 05-cnn
- Loading branch information
Showing
2 changed files
with
258 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
from collections import defaultdict | ||
import time | ||
import random | ||
import torch | ||
import numpy as np | ||
|
||
|
||
class CNNclass(torch.nn.Module): | ||
def __init__(self, nwords, emb_size, num_filters, window_size, ntags): | ||
super(CNNclass, self).__init__() | ||
|
||
""" layers """ | ||
self.embedding = torch.nn.Embedding(nwords, emb_size) | ||
# uniform initialization | ||
torch.nn.init.uniform_(self.embedding.weight, -0.25, 0.25) | ||
# Conv 1d | ||
self.conv_1d = torch.nn.Conv1d(in_channels=emb_size, out_channels=num_filters, kernel_size=window_size, | ||
stride=1, padding=0, dilation=1, groups=1, bias=True) | ||
self.relu = torch.nn.ReLU() | ||
self.projection_layer = torch.nn.Linear(in_features=num_filters, out_features=ntags, bias=True) | ||
# Initializing the projection layer | ||
torch.nn.init.xavier_uniform_(self.projection_layer.weight) | ||
|
||
def forward(self, words, return_activations=False): | ||
emb = self.embedding(words) # nwords x emb_size | ||
emb = emb.unsqueeze(0).permute(0, 2, 1) # 1 x emb_size x nwords | ||
h = self.conv_1d(emb) # 1 x num_filters x nwords | ||
activations = h.squeeze(0).max(dim=1)[1] # argmax along length of the sentence | ||
# Do max pooling | ||
h = h.max(dim=2)[0] # 1 x num_filters | ||
h = self.relu(h) | ||
features = h.squeeze(0) | ||
out = self.projection_layer(h) # size(out) = 1 x ntags | ||
if return_activations: | ||
return out, activations.data.cpu().numpy(), features.data.cpu().numpy() | ||
return out | ||
|
||
|
||
np.set_printoptions(linewidth=np.nan, threshold=np.nan) | ||
|
||
# Functions to read in the corpus | ||
w2i = defaultdict(lambda: len(w2i)) | ||
UNK = w2i["<unk>"] | ||
def read_dataset(filename): | ||
with open(filename, "r") as f: | ||
for line in f: | ||
tag, words = line.lower().strip().split(" ||| ") | ||
words = words.split(" ") | ||
yield (words, [w2i[x] for x in words], int(tag)) | ||
|
||
|
||
# Read in the data | ||
train = list(read_dataset("../data/classes/train.txt")) | ||
w2i = defaultdict(lambda: UNK, w2i) | ||
dev = list(read_dataset("../data/classes/test.txt")) | ||
nwords = len(w2i) | ||
ntags = 5 | ||
|
||
# Define the model | ||
EMB_SIZE = 10 | ||
WIN_SIZE = 3 | ||
FILTER_SIZE = 8 | ||
|
||
# initialize the model | ||
model = CNNclass(nwords, EMB_SIZE, FILTER_SIZE, WIN_SIZE, ntags) | ||
criterion = torch.nn.CrossEntropyLoss() | ||
optimizer = torch.optim.Adam(model.parameters()) | ||
|
||
type = torch.LongTensor | ||
use_cuda = torch.cuda.is_available() | ||
|
||
if use_cuda: | ||
type = torch.cuda.LongTensor | ||
model.cuda() | ||
|
||
|
||
def calc_predict_and_activations(wids, tag, words): | ||
if len(wids) < WIN_SIZE: | ||
wids += [0] * (WIN_SIZE-len(wids)) | ||
words_tensor = torch.tensor(wids).type(type) | ||
scores, activations, features = model(words_tensor, return_activations=True) | ||
scores = scores.squeeze().cpu().data.numpy() | ||
print('%d ||| %s' % (tag, ' '.join(words))) | ||
predict = np.argmax(scores) | ||
print(display_activations(words, activations)) | ||
W = model.projection_layer.weight.data.cpu().numpy() | ||
bias = model.projection_layer.bias.data.cpu().numpy() | ||
print('scores=%s, predict: %d' % (scores, predict)) | ||
print(' bias=%s' % bias) | ||
contributions = W * features | ||
print(' very bad (%.4f): %s' % (scores[0], contributions[0])) | ||
print(' bad (%.4f): %s' % (scores[1], contributions[1])) | ||
print(' neutral (%.4f): %s' % (scores[2], contributions[2])) | ||
print(' good (%.4f): %s' % (scores[3], contributions[3])) | ||
print('very good (%.4f): %s' % (scores[4], contributions[4])) | ||
|
||
|
||
def display_activations(words, activations): | ||
pad_begin = (WIN_SIZE - 1) / 2 | ||
pad_end = WIN_SIZE - 1 - pad_begin | ||
words_padded = ['pad' for _ in range(int(pad_begin))] + words + ['pad' for _ in range(int(pad_end))] | ||
|
||
ngrams = [] | ||
for act in activations: | ||
ngrams.append('[' + ', '.join(words_padded[act:act+WIN_SIZE]) + ']') | ||
|
||
return ngrams | ||
|
||
|
||
for ITER in range(10): | ||
# Perform training | ||
random.shuffle(train) | ||
train_loss = 0.0 | ||
train_correct = 0.0 | ||
start = time.time() | ||
for _, wids, tag in train: | ||
# Padding (can be done in the conv layer as well) | ||
if len(wids) < WIN_SIZE: | ||
wids += [0] * (WIN_SIZE - len(wids)) | ||
words_tensor = torch.tensor(wids).type(type) | ||
tag_tensor = torch.tensor([tag]).type(type) | ||
scores = model(words_tensor) | ||
predict = scores[0].argmax().item() | ||
if predict == tag: | ||
train_correct += 1 | ||
|
||
my_loss = criterion(scores, tag_tensor) | ||
train_loss += my_loss.item() | ||
# Do back-prop | ||
optimizer.zero_grad() | ||
my_loss.backward() | ||
optimizer.step() | ||
print("iter %r: train loss/sent=%.4f, acc=%.4f, time=%.2fs" % (ITER, train_loss/len(train), train_correct/len(train), time.time()-start)) | ||
# Perform testing | ||
test_correct = 0.0 | ||
for _, wids, tag in dev: | ||
# Padding (can be done in the conv layer as well) | ||
if len(wids) < WIN_SIZE: | ||
wids += [0] * (WIN_SIZE - len(wids)) | ||
words_tensor = torch.tensor(wids).type(type) | ||
scores = model(words_tensor) | ||
predict = scores[0].argmax().item() | ||
if predict == tag: | ||
test_correct += 1 | ||
print("iter %r: test acc=%.4f" % (ITER, test_correct/len(dev))) | ||
|
||
|
||
for words, wids, tag in dev: | ||
calc_predict_and_activations(wids, tag, words) | ||
input() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
from collections import defaultdict | ||
import time | ||
import random | ||
import torch | ||
|
||
|
||
class CNNclass(torch.nn.Module): | ||
def __init__(self, nwords, emb_size, num_filters, window_size, ntags): | ||
super(CNNclass, self).__init__() | ||
|
||
""" layers """ | ||
self.embedding = torch.nn.Embedding(nwords, emb_size) | ||
# uniform initialization | ||
torch.nn.init.uniform_(self.embedding.weight, -0.25, 0.25) | ||
# Conv 1d | ||
self.conv_1d = torch.nn.Conv1d(in_channels=emb_size, out_channels=num_filters, kernel_size=window_size, | ||
stride=1, padding=0, dilation=1, groups=1, bias=True) | ||
self.relu = torch.nn.ReLU() | ||
self.projection_layer = torch.nn.Linear(in_features=num_filters, out_features=ntags, bias=True) | ||
# Initializing the projection layer | ||
torch.nn.init.xavier_uniform_(self.projection_layer.weight) | ||
|
||
def forward(self, words): | ||
emb = self.embedding(words) # nwords x emb_size | ||
emb = emb.unsqueeze(0).permute(0, 2, 1) # 1 x emb_size x nwords | ||
h = self.conv_1d(emb) # 1 x num_filters x nwords | ||
# Do max pooling | ||
h = h.max(dim=2)[0] # 1 x num_filters | ||
h = self.relu(h) | ||
out = self.projection_layer(h) # size(out) = 1 x ntags | ||
return out | ||
|
||
|
||
# Functions to read in the corpus | ||
w2i = defaultdict(lambda: len(w2i)) | ||
t2i = defaultdict(lambda: len(t2i)) | ||
UNK = w2i["<unk>"] | ||
|
||
|
||
def read_dataset(filename): | ||
with open(filename, "r") as f: | ||
for line in f: | ||
tag, words = line.lower().strip().split(" ||| ") | ||
yield ([w2i[x] for x in words.split(" ")], t2i[tag]) | ||
|
||
|
||
# Read in the data | ||
train = list(read_dataset("../data/classes/train.txt")) | ||
w2i = defaultdict(lambda: UNK, w2i) | ||
dev = list(read_dataset("../data/classes/test.txt")) | ||
nwords = len(w2i) | ||
ntags = len(t2i) | ||
|
||
# Define the model | ||
EMB_SIZE = 64 | ||
WIN_SIZE = 3 | ||
FILTER_SIZE = 64 | ||
|
||
# initialize the model | ||
model = CNNclass(nwords, EMB_SIZE, FILTER_SIZE, WIN_SIZE, ntags) | ||
criterion = torch.nn.CrossEntropyLoss() | ||
optimizer = torch.optim.Adam(model.parameters()) | ||
|
||
type = torch.LongTensor | ||
use_cuda = torch.cuda.is_available() | ||
|
||
if use_cuda: | ||
type = torch.cuda.LongTensor | ||
model.cuda() | ||
|
||
|
||
for ITER in range(100): | ||
# Perform training | ||
random.shuffle(train) | ||
train_loss = 0.0 | ||
train_correct = 0.0 | ||
start = time.time() | ||
for words, tag in train: | ||
# Padding (can be done in the conv layer as well) | ||
if len(words) < WIN_SIZE: | ||
words += [0] * (WIN_SIZE - len(words)) | ||
words_tensor = torch.tensor(words).type(type) | ||
tag_tensor = torch.tensor([tag]).type(type) | ||
scores = model(words_tensor) | ||
predict = scores[0].argmax().item() | ||
if predict == tag: | ||
train_correct += 1 | ||
|
||
my_loss = criterion(scores, tag_tensor) | ||
train_loss += my_loss.item() | ||
# Do back-prop | ||
optimizer.zero_grad() | ||
my_loss.backward() | ||
optimizer.step() | ||
print("iter %r: train loss/sent=%.4f, acc=%.4f, time=%.2fs" % ( | ||
ITER, train_loss / len(train), train_correct / len(train), time.time() - start)) | ||
# Perform testing | ||
test_correct = 0.0 | ||
for words, tag in dev: | ||
# Padding (can be done in the conv layer as well) | ||
if len(words) < WIN_SIZE: | ||
words += [0] * (WIN_SIZE - len(words)) | ||
words_tensor = torch.tensor(words).type(type) | ||
scores = model(words_tensor)[0] | ||
predict = scores.argmax().item() | ||
if predict == tag: | ||
test_correct += 1 | ||
print("iter %r: test acc=%.4f" % (ITER, test_correct / len(dev))) |