Pipeline image from the UNTAG paper
Official PyTorch implementation of "UNTAG: A Two Stage Framework For Unsupervised Type-Agnostic Deepfake Detection"
Official uni repo: https://gitlab.uni.lu/phd-nesryne/practical-part/untag-final/-/tree/master/
First clone the repository and use environment.yml
to setup a conda virtual environment.
$ git clone [email protected]:nesrnesr/UNTAG.git
$ cd UNTAG
$ conda env create -f environment.yml
Run train_stage_one.py
to train the spliced regions prediction model on an offline-generated dataset.
The command to run is
$ python train_stage_one.py --log_dir_name pretext_task --dataset_path ./data/stage_one/original_real_data --augmented_dataset_path ./data/stage_one/spliced_data --num_class 6 --pretrained True --num_epochs 2 --batch_size 32 --learning_rate 0.00003 --freeze_layers True --data_augmentation_type basic --manipulation_type 6transforms
To fit the Gaussian Mixture Model run the following using the weights of epoch 1 of the pretext task:
$ python stage_two.py --checkpoint ./tb_logs/pretext_task/version_1/checkpoints/weights.ckpt --data ./data/stage_two_data --num_classes 6 --exp_name exp_on_cdf --df_type cdf