-
Notifications
You must be signed in to change notification settings - Fork 0
/
remote_control.py
598 lines (502 loc) · 22.1 KB
/
remote_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import pygame
import time
import logging
import argparse
import threading
from datetime import datetime
from PIL import Image
import numpy as np
import quaternion
import signal
import traceback
import json
import os
import gi
gi.require_version('Gtk', '3.0')
from gi.repository import Gtk, Gdk, GdkPixbuf, GLib
from matplotlib.backends.backend_gtk3agg import (
FigureCanvasGTK3Agg as FigureCanvas)
from matplotlib.figure import Figure
from matplotlib.backends.backend_gtk3 import (
NavigationToolbar2GTK3 as NavigationToolbar)
from matplotlib.patches import Rectangle
from curses import wrapper
import cflib.crtp
from cflib.crazyflie import Crazyflie
from cflib.crazyflie.log import LogConfig
from cflib.crazyflie.syncCrazyflie import SyncCrazyflie
from cflib.positioning.motion_commander import MotionCommander
from agents import PointGoalAgent, compute_pointgoal_cf
from viewer import ImgThread
logging.basicConfig(level=logging.ERROR)
class ControlThread(threading.Thread):
DEFAULT_VELOCITY = 0.3 # m/s
DEFAULT_YAW_RATE = 20 # deg/s
def __init__(self, experiment=None, agent_config=None, eps_id=None, setpoint_mode="velocity"):
threading.Thread.__init__(self, daemon=False)
self.running = True
self.URI = 'radio://0/80/2M/E7E7E7E7E0'
self.DEFAULT_HEIGHT = 0.4 # m
self.DEADZONE = 0.1
self.BUTTON_RB = 5
self.BUTTON_LB = 4
self.BUTTON_A = 0
self.BUTTON_B = 1
self.BUTTON_X = 2
self.BUTTON_Y = 3
self.BUTTON_START = 7
self.BUTTON_SELECT = 6
self.setpoint_mode=setpoint_mode
self.is_deck_attached = False
self.mc = None # Motion commander
self.hlc = None # High level commander
self.goal = np.array([0,0,0])
self.start_yaw = None
self.position_estimate = np.zeros((3))
self.orientation_estimate = np.zeros((3))
self.quaternions = quaternion.from_euler_angles(
self.orientation_estimate/180*np.pi)
self.range_estimate = np.zeros((5))
self.battery_volts = 0.0
self.flying = False
self.last_image = None
self.image_count = 0
self.last_image_at = None
self.recording = []
self.ranger_points = []
self.recording_period_ms = 300
pygame.init()
self.joysticks = []
self.clock = pygame.time.Clock()
for i in range(0, pygame.joystick.get_count()):
self.joysticks.append(pygame.joystick.Joystick(i))
self.joysticks[-1].init()
print("Detected joystick " + self.joysticks[-1].get_name())
if agent_config:
# self.pointgoal_agent = PointGoalAgent(agent_config)
self.pointgoal_agent = PointGoalAgent(
agent_config,
weights="data/pretrained-models/ddppo-grayscale-99.pth"
)
self.ui = Gtk.Builder()
self.ui.add_from_file("ui.glade")
self.window = self.ui.get_object("window")
self.window.connect("destroy", app_exit)
self.window.show_all()
vbox = Gtk.VBox()
self.ui.get_object("map_frame").add(vbox)
self.fig = Figure(figsize=(5,4), dpi=100)
self.ax = self.fig.add_subplot(111)
self.ax.set_xlim([-3, 7])
self.ax.set_ylim([-3, 7])
self.drone_path, = self.ax.plot([])
self.drone_position, = self.ax.plot(0, 0,
marker=(3, 0, 0), linestyle='None', color="green")
self.ranger_points_scatter = self.ax.scatter([], [])
self.chart_canvas = FigureCanvas(self.fig) # a Gtk.DrawingArea
vbox.pack_start(self.chart_canvas, True, True, 0)
toolbar = NavigationToolbar(self.chart_canvas, self.window)
vbox.pack_start(toolbar, False, False, 0)
self.set_label("control_rl_action", "-")
if experiment:
with open(experiment, 'r') as f:
self.experiment_cfg = json.load(f)
b = self.experiment_cfg["room_boundaries"]
area = Rectangle((b[0],b[2]),b[1]-b[0],b[3]-b[2],linewidth=1,edgecolor='r',facecolor='none')
self.ax.add_patch(area)
for b in self.experiment_cfg["box_obstacles"]:
box = Rectangle((b[0],b[1]),b[2],-b[3],linewidth=1,edgecolor='r',facecolor='none')
self.ax.add_patch(box)
name_store = Gtk.ListStore(int, str)
for id, e in enumerate(self.experiment_cfg["episodes"]):
name = "[{:.2f},{:.2f}]->[{:.2f},{:.2f}]".format(
e["start"][0], e["start"][1],
e["end"][0], e["end"][1],
)
name_store.append([id, name])
print(name)
self.ui.get_object("episode_picker").set_model(name_store)
self.ui.get_object("episode_picker").set_active(0)
if eps_id != None:
self.ui.get_object("episode_picker").set_active(eps_id)
episode = self.experiment_cfg["episodes"][eps_id]
print(episode)
start = episode["start"]
end = episode["end"]
self.goal = np.array([end[0], end[1], 0])
print(self.goal)
self.start_yaw = episode["start_yaw"]
self.ax.plot(self.goal[0], self.goal[1],
marker="*", linestyle='None', color="red")
self.ax.plot(start[0], start[1],
marker="D", linestyle='None', color="blue")
self.fig.canvas.draw_idle()
recording_file_name = "recordings/{}-{}-{}.csv".format(datetime.now().timestamp(), os.path.basename(agent_config), eps_id)
self.recording_file = open(recording_file_name, "a")
self.recording_file.write("time,x,y,z,yaw,pitch,roll,action\n")
self.recording_file.flush()
self.window.show_all()
def control_loop(self):
max_vel = 0.3
max_yaw_rate = 40
x_vel = 0.0
y_vel = 0.0
yaw_rate = 0.0
control_mode = "joystick"
next_action_after = time.time()
action_count = 0
current_target_pos = None
current_target_yaw = 0.0
axes = [0, 0, 0, 0, 0, 0]
while self.running:
self.clock.tick(30)
if self.flying:
self.record()
else:
self.drone_position.remove()
self.drone_position, = self.ax.plot(
self.position_estimate[0], self.position_estimate[1],
marker=(3, 0, self.orientation_estimate[0]), linestyle='None', color="green")
self.fig.canvas.draw_idle()
for event in pygame.event.get():
if event.type == pygame.JOYBUTTONDOWN:
#Change control mode
if event.button == self.BUTTON_RB:
if self.setpoint_mode == "velocity":
control_mode = "pointgoal"
self.pointgoal_agent.reset_state()
elif self.setpoint_mode == "position":
current_target_pos = np.copy(self.position_estimate)
current_target_yaw = self.orientation_estimate[0]
self.go_to(current_target_pos, current_target_yaw)
#Start/Stop flight
elif event.button == self.BUTTON_START:
if self.hlc != None and self.flying:
print("Landing")
self.land()
elif self.hlc and not self.flying:
print("Taking off")
self.takeoff()
#Reset kalman filter
elif event.button == self.BUTTON_SELECT:
self.scf.cf.param.set_value('kalman.resetEstimation', '1')
elif event.type == pygame.JOYBUTTONUP:
if event.button == self.BUTTON_RB:
control_mode = "joystick"
current_target_pos = None
elif event.type == pygame.JOYAXISMOTION:
axes[event.axis] = event.value
if abs(axes[4]) > self.DEADZONE:
x_vel = max_vel * axes[4] * -1
else:
x_vel = 0.0
if abs(axes[3]) > self.DEADZONE:
y_vel = max_vel * axes[3] * -1
else:
y_vel = 0.0
if abs(axes[0]) > self.DEADZONE:
yaw_rate = max_yaw_rate * axes[0]
else:
yaw_rate = 0.0
self.update_ui()
self.set_label("control_x_vel", "{:0.2f}".format(x_vel))
self.set_label("control_y_vel", "{:0.2f}".format(y_vel))
self.set_label("control_yaw", "{:0.2f}".format(yaw_rate))
self.set_label("control_mode", control_mode)
distance, angle = compute_pointgoal_cf(self.position_estimate, self.orientation_estimate[0], self.goal)
self.set_label("control_goal_distance", "{:0.2f}".format(distance))
self.set_label("control_goal_angle", "{:0.2f}".format(angle*180/np.pi))
self.set_label("control_goal", "{:0.1f}, {:0.1f}".format(self.goal[0], self.goal[1]))
if self.cf != None and self.flying:
if control_mode == "joystick":
# self.linear_motion(x_vel, y_vel, yaw_rate=yaw_rate)
self.mc.start_linear_motion(x_vel, y_vel, 0, rate_yaw=yaw_rate)
elif control_mode == "pointgoal":
# distance = calculate_distance(current_target_pos, self.position_estimate)
# yaw_diff = np.abs(self.orientation_estimate[0] - current_target_yaw)
# Only take next action if within 5cm and 1 degree of target
if time.time() > next_action_after: #(distance < 0.05 and yaw_diff < 3) or time.time() < next_action_after:
# print("reached target ", distance, yaw_diff)
# self.cf.commander.send_hover_setpoint(0,0,0, self.DEFAULT_HEIGHT)
# Only take an action if we have a recent image
if self.last_image != None and time.time() - self.last_image_at < 0.4:
image = self.last_image.resize((256,256))
image = np.array(image)
image = np.stack((image, image, image), axis=-1)
yaw = self.orientation_estimate[0]
action = self.pointgoal_agent.act(
image, self.position_estimate, yaw, self.goal)
action_count += 1
self.set_label("control_rl_action", "{} ({})".format(action, action_count))
self.recording_file.write("{},,,,,,,{}\n".format(datetime.now().timestamp(), action))
if self.setpoint_mode == "velocity":
if action == "MOVE_FORWARD":
if self.range_estimate[0] > 0.25 or True:
self.mc.start_linear_motion(0.25, 0.0, 0.0)
next_action_after = time.time() + 1.0
else:
self.mc.stop()
next_action_after = time.time() + 0.5
elif action == "TURN_LEFT":
self.mc.start_linear_motion(0.0, 0.0, 0.0, rate_yaw=-20.0)
next_action_after = time.time() + 0.5
elif action == "TURN_RIGHT":
self.mc.start_linear_motion(0.0, 0.0, 0.0, rate_yaw=20.0)
next_action_after = time.time() + 0.5
elif action == "STOP":
self.mc.stop()
return
elif self.setpoint_mode == "position":
if action == "MOVE_FORWARD":
if True: # or self.range_estimate[0] > 0.25:
current_target_pos = forward(current_target_pos, current_target_yaw, 0.25)
self.go_to(current_target_pos, current_target_yaw)
else:
self.stop()
next_action_after = time.time() + 0.5
elif action == "TURN_LEFT":
current_target_yaw = turn(current_target_yaw, 10)
self.go_to(current_target_pos, current_target_yaw)
elif action == "TURN_RIGHT":
current_target_yaw = turn(current_target_yaw, -10)
self.go_to(current_target_pos, current_target_yaw)
elif action == "STOP":
self.stop()
return
next_action_after = time.time() + 1.5
else: #stop if we need to take and action but have no recent image
self.stop()
else:
if self.setpoint_mode == "position":
self.go_to(current_target_pos, current_target_yaw)
def update_ui(self):
self.set_label("drone_x", "{:0.2f}".format(self.position_estimate[0]))
self.set_label("drone_y", "{:0.2f}".format(self.position_estimate[1]))
self.set_label("drone_z", "{:0.2f}".format(self.position_estimate[2]))
self.set_label("drone_yaw", "{:0.2f}".format(self.orientation_estimate[0]))
self.set_label("drone_roll", "{:0.2f}".format(self.orientation_estimate[1]))
self.set_label("drone_pitch", "{:0.2f}".format(self.orientation_estimate[2]))
self.set_label("drone_front", "{}".format(self.range_estimate[0]))
self.set_label("drone_left", "{}".format(self.range_estimate[1]))
self.set_label("drone_right", "{}".format(self.range_estimate[2]))
self.set_label("drone_back", "{}".format(self.range_estimate[3]))
self.set_label("drone_top", "{}".format(self.range_estimate[4]))
self.set_label("drone_battery", "{:0.2f}".format(self.battery_volts))
def record(self):
if len(self.recording) == 0 or time.time() - self.recording[-1][0] > self.recording_period_ms/1000:
self.recording_file.write("{},{},{},{},{},{},{},\n".format(
datetime.now().timestamp(),
self.position_estimate[0],
self.position_estimate[1],
self.position_estimate[2],
self.orientation_estimate[0],
self.orientation_estimate[1],
self.orientation_estimate[2],
))
self.recording.append([
time.time(),
self.position_estimate.copy(),
self.orientation_estimate.copy(),
self.range_estimate.copy()
])
self.ranger_points.append(self.drone_to_world(
[self.range_estimate[0], 0, 0]
))
self.ranger_points.append(self.drone_to_world(
[-self.range_estimate[3], 0, 0]
))
self.ranger_points.append(self.drone_to_world(
[0, self.range_estimate[1], 0]
))
self.ranger_points.append(self.drone_to_world(
[0, -self.range_estimate[2], 0]
))
range_x = [x[0] for x in self.ranger_points]
range_y = [y[1] for y in self.ranger_points]
self.ranger_points_scatter.remove()
self.ranger_points_scatter = self.ax.scatter(range_x, range_y, color="red", s=1)
x = [x[1][0] for x in self.recording]
y = [y[1][1] for y in self.recording]
self.drone_path.remove()
self.drone_path, = self.ax.plot(x, y, color="blue")
self.drone_position.remove()
self.drone_position, = self.ax.plot(
self.position_estimate[0], self.position_estimate[1],
marker=(3, 0, self.orientation_estimate[0]), linestyle='None', color="green")
self.fig.canvas.draw_idle()
def drone_to_world(self, vector):
return quaternion.rotate_vectors(self.quaternions,
vector
) + self.position_estimate
def set_label(self, label_id, text):
GLib.idle_add(self.ui.get_object(label_id).set_text, text)
def log_pos_callback(self, timestamp, data, logconf):
self.position_estimate[0] = data['stateEstimate.x']
self.position_estimate[1] = data['stateEstimate.y']
self.position_estimate[2] = data['stateEstimate.z']
self.orientation_estimate[0] = data['stateEstimate.yaw']
self.orientation_estimate[1] = data['stateEstimate.roll']
self.orientation_estimate[2] = data['stateEstimate.pitch']
self.quaternions = quaternion.from_euler_angles(self.orientation_estimate/180*np.pi)
# self.drone_path.set_xdata(self.position_estimate[0])
# self.drone_path.set_ydata(self.position_estimate[1])
def log_range_callback(self, timestamp, data, logconf):
self.range_estimate[0] = data['range.front']/1000
self.range_estimate[1] = data['range.left']/1000
self.range_estimate[2] = data['range.right']/1000
self.range_estimate[3] = data['range.back']/1000
self.range_estimate[4] = data['range.up']/1000
def on_battery(self, timestamp, data, logconf):
self.battery_volts = data["pm.vbat"]
def on_image(self, img, imgdata):
if self.last_image_at != None:
fps = 1 / (time.time() - self.last_image_at)
self.set_label("camera_status", "{:.1f} fps / {:.1f} kb ({})".format(fps, len(imgdata)/1000, self.image_count))
self.last_image_at = time.time()
self.image_count = self.image_count + 1
self.last_image = img
img.save("recordings/images/{}-{}.jpg".format(datetime.now().timestamp(), self.image_count))
# Try to decode JPEG from the data sent from the stream
try:
img_loader = GdkPixbuf.PixbufLoader()
img_loader.write(imgdata)
img_loader.close()
pix = img_loader.get_pixbuf()
# GLib.idle_add(self._update_image, pix)
GLib.idle_add(self.ui.get_object("camera").set_from_pixbuf, pix)
except gi.repository.GLib.Error:
print("Could not set image!")
def param_deck_positioning(self, name, value_str):
value = int(value_str)
if value:
self.is_deck_attached = True
print(name, 'deck is attached!')
else:
is_deck_attached = False
print(name, 'deck is NOT attached!')
def run(self):
cflib.crtp.init_drivers()
with SyncCrazyflie(self.URI, cf=Crazyflie(rw_cache='./cache')) as scf:
scf.cf.param.add_update_callback(group='deck', name='bcFlow2', cb=self.param_deck_positioning)
scf.cf.param.add_update_callback(group='deck', name='bcLighthouse4', cb=self.param_deck_positioning)
self.scf = scf
self.cf = scf.cf
self.hlc = scf.cf.high_level_commander
time.sleep(1)
pos_logger = LogConfig(name='Position', period_in_ms=100)
pos_logger.add_variable('stateEstimate.x', 'float')
pos_logger.add_variable('stateEstimate.y', 'float')
pos_logger.add_variable('stateEstimate.z', 'float')
pos_logger.add_variable('stateEstimate.pitch', 'float')
pos_logger.add_variable('stateEstimate.roll', 'float')
pos_logger.add_variable('stateEstimate.yaw', 'float')
scf.cf.log.add_config(pos_logger)
pos_logger.data_received_cb.add_callback(self.log_pos_callback)
range_logger = LogConfig(name="Range", period_in_ms=100)
range_logger.add_variable('range.back', 'uint16_t')
range_logger.add_variable('range.left', 'uint16_t')
range_logger.add_variable('range.right', 'uint16_t')
range_logger.add_variable('range.front', 'uint16_t')
range_logger.add_variable('range.up', 'uint16_t')
scf.cf.log.add_config(range_logger)
range_logger.data_received_cb.add_callback(self.log_range_callback)
battery_logger = LogConfig(name="Battery", period_in_ms=300)
battery_logger.add_variable('pm.vbat', 'float')
scf.cf.log.add_config(battery_logger)
battery_logger.data_received_cb.add_callback(self.on_battery)
if self.is_deck_attached:
pos_logger.start()
range_logger.start()
battery_logger.start()
self.mc = MotionCommander(scf, default_height=self.DEFAULT_HEIGHT)
try:
self.control_loop()
except Exception as e:
print("Control loop exited with an exception:")
print(traceback.format_exc())
print(e)
print("landing")
self.land()
pos_logger.stop()
range_logger.stop()
battery_logger.stop()
self.recording_file.flush()
def land(self):
if self.setpoint_mode == "position":
if self.flying:
self.flying = False
if self.position_estimate[2] > 0.1:
self.cf.commander.send_hover_setpoint(0, 0, 0, 0.1)
time.sleep(1)
self.cf.commander.send_stop_setpoint()
self.hlc.land(0.0,
2.0,
yaw=None)
elif self.setpoint_mode == "velocity":
self.mc.land()
self.flying = False
def takeoff(self):
self.flying = True
if self.setpoint_mode == "position":
self.hlc.takeoff(self.DEFAULT_HEIGHT,
self.duration(self.DEFAULT_HEIGHT, 0.0),
yaw=None)
elif self.setpoint_mode == "velocity":
self.mc.take_off()
def go_to(self, xyz, yaw, velocity=DEFAULT_VELOCITY, relative=False):
print("Go to ", xyz, " yaw ", yaw)
if self.flying:
print("Executing go to")
distance = calculate_distance(xyz, self.position_estimate)
yaw_change = np.abs(yaw-self.orientation_estimate[0])
# self.hlc.go_to(xyz[0], xyz[1], xyz[2],
# np.deg2rad(yaw),
# self.duration(distance, yaw_change, velocity=velocity),
# relative=relative)
self.cf.commander.send_position_setpoint(xyz[0], xyz[1], xyz[2], yaw)
def linear_motion(self, x_vel, y_vel, yaw_rate=0.0, height=None):
if self.flying:
height = height or self.DEFAULT_HEIGHT
self.cf.commander.send_hover_setpoint(x_vel, y_vel, yaw_rate, height)
def stop(self):
if self.setpoint_mode == "position":
self.linear_motion(0.0, 0.0)
elif self.setpoint_mode == "velocity":
self.mc.stop()
def duration(self, distance, yaw_change,
velocity=DEFAULT_VELOCITY, yaw_rate=DEFAULT_YAW_RATE):
print("duration: ", distance, yaw_change)
d = max(distance / velocity, yaw_change / yaw_rate, 0.2)
print("duration2: ", d)
return max(distance / velocity, yaw_change / yaw_rate, 0.2)
def forward(xyz, yaw, distance):
print("forward ", xyz, yaw, distance)
rads = np.deg2rad(yaw)
delta = np.array([np.cos(rads), np.sin(rads), 0]) * distance
return xyz + delta
def turn(yaw, change):
print("turn ", yaw, change)
return ((yaw+180+change)%360)-180
def calculate_distance(a, b):
return np.linalg.norm(a-b)
control_thread = None
def app_exit(*args):
print("Exiting app")
if control_thread:
control_thread.running = False
Gtk.main_quit()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Remote control a Crazyflie with a flow deck and AI deck camera')
parser.add_argument("-n", default="192.168.4.1", metavar="ip", help="AI-deck IP")
parser.add_argument("-p", type=int, default='5000', metavar="port", help="AI-deck port")
parser.add_argument("-e", default=None, metavar="experiment", help="Experiment config file")
parser.add_argument("--eps_id", type=int, default=None, metavar="episode_id", help="Experiment config file")
parser.add_argument("-a", default=None, metavar="agent_config", help="Agent config file")
parser.add_argument("-c", default="velocity", metavar="setpoint_mode", help="Setpoint mode, either velocity or position")
args = parser.parse_args()
control_thread = ControlThread(experiment=args.e, agent_config=args.a, eps_id = args.eps_id, setpoint_mode=args.c)
img_thread = ImgThread(args.n, args.p, control_thread.on_image, viewer=False)
img_thread.start()
control_thread.start()
GLib.unix_signal_add(GLib.PRIORITY_DEFAULT, signal.SIGINT, app_exit)
Gtk.main()