Skip to content

Codes for pre-processing and stimuli material embedding

License

Notifications You must be signed in to change notification settings

ncclab-sustech/EmoEEG-MC

Repository files navigation

EmoEEG-MC: A Multi-Context Emotional EEG Dataset for Cross-Context Emotion Decoding

Abstract

EEG-basedemotion decoding is essential for unveiling neural mechanisms underlying emotion and enabling artificial intelligence to understand human emotions. However, existing datasets for EEG-based emotion decoding are limited to a single context of emotion elicitation. The ability of emotion decoding methods to generalize across different contexts remains underexplored. To address this gap, we present the Multi-Context Emotional EEG (EmoEEG-MC) dataset, featuring 64-channel EEG and peripheral physiological data from 60 participants exposed to two distinct contexts: video-induced and imagery-induced emotions. These contexts evoke seven distinct emotional categories: joy, inspiration, tenderness, fear, disgust, sadness, and neutral emotion. The emotional experience of specific emotion categories was validated through subjective reports. Using support vector machines with L1 regularization, we achieved cross-context emotion decoding accuracies of 66.7% for binary classification (positive vs. negative emotions) and 28.9% for seven-category emotion classification, both significantly above chance levels. The EmoEEG-MC dataset serves as a foundational resource for understanding the neural mechanisms underlying emotional processing and enhancing the real-world applicability of affective computing systems.

Introduction

framework

Experimental procedures and the experimental setup. (a) The block-design experimental protocol. (b) Video trial & imagery trial. (c) The 64-channel EEG acquisition system (g.HIamp, g.tec Medical Engineering), the wristband for PPG and GSR signal collection (Psychorus, HuiXin), and the experimental environment. This repository contains codes for preprocessing and stimuli material embeddings. You can find the dataset via OpenNeuro(doi:10.18112/openneuro.ds005540.v1.0.3) or ScienceDB(10.57760/sciencedb.14025).

framework

The summary of key features of the EmoEEG-MC dataset.

Method

Experiment Procedure

During the experiment, participants were seated approximately 160 cm away from a 43 -inch monitor (Konka, China). The experiment involved two distinct emotion-induction contexts: video-induced emotion context and imagery-induced emotion context. The video context used external visual and auditory stimuli, and the imagery context relied on guided narratives and internal imagery to evoke emotion. This setup provided a good testbed for cross-context comparison of EEG representations. Each context comprised seven blocks, with a total of fourteen blocks. From the start of the experiment, each consecutive two blocks included a video block and an imagery block, with the order of the two blocks randomized. Each block consisted of three imagery trials or three video trials. The materials in one block were randomly selected from those with the same valence to minimize the potential influence of alternating valence, and they were presented in a random order. Between two blocks, participants were asked to solve 20 arithmetic problems to attenuate their previous emotional experience.

Each imagery block began with an instruction to guide participants to close their eyes and relax. After that, participants would listen to the guided narratives for emotion induction, where they were asked to imagine the described scene and immerse themselves in the emotional state. There were 30 seconds for the imagery process, but if participants felt the emotion dissipate before the time was up, they could press a button to end the imagination early. Subsequently, participants completed subjective ratings including items of six discrete emotions and four affective dimensions, the same as those in the Stimuli Selection section. After completing the ratings, a "washout" audio was played, prompting participants to relax before starting the next trial.

In the video trials, following a five-second fixation with a white cross in the center of a black screen, the video clip is displayed. After watching the video, participants made the same subjective report as that in the imagery part. A landscape picture was shown for 30 seconds between trials to help participants relax. The experimental program was implemented in Python using the Pygame framework.

Two sessions of resting-state EEG data were collected: a session of four minutes before the experiment and another of four minutes after all trials were completed. The first two minutes of each session were recorded with eyes open and the last two minutes with eyes closed. To prevent excessive fatigue among the participants, they were given a break after the seventh block was completed. During this break, participants were allowed to rest for any duration while wearing the EEG cap and wristwatch. Most participants chose to rest for 15 minutes.

EEG Signal Preprocessing

The EEG preprocessing procedures were as follows: First, the data were filtered to $0.1-47 \mathrm{~Hz}$, downsampled to 200 Hz , and then segmented into trials. For imagery trials, we used the 30 seconds before the button press (or 30 seconds before the start of the rating if no button was pressed) for further analysis; for video trials, we selected the last 30 seconds of the video clip presentation for further analysis . Next, we inspected bad channels based on two criteria. First, channels containing more than $30 %$ outliers were flagged, where outliers are defined as absolute values exceeding three times from the trial's median of absolute. Second, we identified channels with abnormal variance by plotting the variance for each channel across trials to detect significant variance jumps. Suspected bad channels were further verified through visual inspection of the EEG signals and were subsequently interpolated using the average of three neighboring channels. Then we performed Independent Component Analysis (ICA) and manually removed components derived from eye movements and muscle artifacts. Finally, common average referencing and trial reordering were applied. As the order of materials presentation was randomized across subjects, reordering of the trials ensured that the order of EEG data was the same for all subjects to facilitate subsequent analysis.

Our dataset also provides several commonly used EEG features, including differential entropy (DE) and power spectral density (PSD) features. DE and PSD features were extracted from the preprocessed data within each non-overlapping second at five frequency bands (delta band: 1-4 Hz, theta band: $4-8 \mathrm{~Hz}$, alpha band: $8-14 \mathrm{~Hz}$, beta band: $14-30 \mathrm{~Hz}$, and gamma band: $30-47 \mathrm{~Hz}$ ). The formula to calculate DE and PSD followed the practice in the SEED dataset :

$$ \begin{gathered} P S D=E\left[x^2\right] \\ D E=\frac{1}{2} \ln \left(2 \pi e \sigma^2\right) \end{gathered} $$

where $x$ is the EEG signal filtered into a frequency band and $\sigma^2$ is the variance of the EEG signal.

Stimuli Embedding

The stimulus-related materials are stored in the stimuli folder of the EmoEEG-MC dataset. In the stimuli/ses-ima folder, the imagery_guidance.xlsx file contains the text of imagery guidance. The stimuli/ses-vid folder includes the video_description.xlsx file, providing descriptions of the video content, as well as embedding files (e.g., video_01_embedding.mat), providing embeddings extracted by vision Transformer from the video frames and the audio. The video frames were rescaled to a size of $112^* 112$, segmented into 16*16 patches, and fed into a pretrained vision Transformer. 128 Mel Filterbank features were extracted from the audio and fed into a base-scale Data-efficient Image Transformer (DeiT). Visual and audio embeddings were both of 768 dimensions. The embeddings were averaged within each second.

Participants' Behaviour Reports

The ten behavioral rating items for the participants are as follows:

  • Joy
  • Inspiration
  • Tenderness
  • Sadness
  • Fear
  • Disgust
  • Arousal
  • Valence
  • Familiarity
  • Liking

Channels

The EEG channels follow the 10-20 system with 64 channels, and the channel names are as follows:

'Fp1', 'Fpz', 'Fp2', 'AF7', 'AF3','AF4','AF8', 'F7', 'F5','F3','F1','Fz', 'F2', 'F4', 'F6', 'F8', 'FT7', 'FC5', 'FC3', 'FC1','FCz','FC2','FC4', 'FC6', 'FT8', 'T7','C5', 'C3', 'C1', 'Cz', 'C2', 'C4', 'C6', 'T8', 'TP7', 'CP5', 'CP3', 'CP1','CPz','CP2', 'CP4','CP6', 'TP8', 'P7','P5', 'P3', 'P1', 'Pz','P2', 'P4', 'P6', 'P8', 'PO7', 'PO3','POz', 'PO4','PO8', 'O1','Oz','O2', 'F9', 'F10', 'TP9', 'TP10'

The order of the 64 channels mentioned in subsequent files follows the same order as listed above.

Dataset Description

The dataset includes EEG data from 60 participants, along with peripheral physiological data (PPG and GSR) for some participants. Among the 60 participants, sub01-sub54 have complete trials (21 imagery trials and 21 video trials), while sub55-sub60 have missing trials. The details of the missing trials are as follows:

  • sub55: Missing 3 imagery trials (Trials 19-21) and 3 video trials (Trials 40-42).
  • sub56: Missing 2 imagery trials (Trials 20 and 21).
  • sub57: Missing 4 imagery trials (Trials 6, 8, 13, and 21) and 6 video trials (Trials 23, 24, 36, 37, 38, and 42).
  • sub58: Missing 3 imagery trials (Trials 9, 20, and 21).
  • sub59: Missing 6 imagery trials (Trials 2, 4, 6, 12, 19, and 21) and 4 video trials (Trials 29, 37, 39, and 42).
  • sub60: Missing 14 imagery trials (Trials 8-21) and 12 video trials (Trials 31-42).

All missing values are denoted as n/a in the participants' behavioral data.

Experimental Trial Reordering and Missing Trial Information

Trial Reordering

After reordering, the sequence for both imagery and video trials is as follows:

reorder = ['sad4', 'sad5', 'sad8', 'dis4', 'dis5', 'dis8', 'fear4', 'fear5', 'fear8', 'neu4', 'neu5', 'neu8', 'joy4', 'joy5', 'joy8', 'ten4', 'ten5', 'ten8', 'ins4', 'ins5', 'ins8']

Full Trial Participants

For participants with complete trials (sub01-sub54, with the same order for both imagery and video trials; detailed stimulus information can be found in sub-xx/sub-xx_events), the experimental sequence is as follows:

  1. ['joy5', 'ins5', 'joy8', 'fear8', 'sad8', 'dis5', 'neu4', 'neu5', 'neu8', 'ten5', 'ten8', 'joy4', 'dis4', 'fear4', 'sad4', 'ins8', 'ins4', 'ten4', 'dis8', 'fear5', 'sad5']
  2. ['fear8', 'fear5', 'dis4', 'ins8', 'joy8', 'ins4', 'neu4', 'neu8', 'neu5', 'sad4', 'dis8', 'fear4', 'ten5', 'ten8', 'joy4', 'dis5', 'sad8', 'sad5', 'joy5', 'ten4', 'ins5']
  3. ['ten4', 'joy4', 'joy8', 'neu4', 'neu8', 'neu5', 'dis5', 'fear4', 'fear5', 'ten8', 'ten5', 'ins5', 'fear8', 'dis4', 'dis8', 'ins8', 'joy5', 'ins4', 'sad4', 'sad5', 'sad8']
  4. ['fear5', 'dis8', 'dis5', 'joy4', 'ten5', 'ins5', 'neu4', 'neu8', 'neu5', 'sad8', 'fear8', 'sad4', 'ins4', 'ins8', 'joy8', 'fear4', 'sad5', 'dis4', 'ten4', 'joy5', 'ten8']
  5. ['joy8', 'ten4', 'ins5', 'fear5', 'sad5', 'dis4', 'neu4', 'neu5', 'neu8', 'joy4', 'ten8', 'joy5', 'sad4', 'dis8', 'fear8', 'ins4', 'ten5', 'ins8', 'sad8', 'dis5', 'fear4']
  6. ['joy8', 'ins5', 'ins8', 'dis4', 'dis8', 'fear8', 'ten4', 'joy5', 'ten5', 'dis5', 'fear5', 'fear4', 'ten8', 'ins4', 'joy4', 'sad8', 'sad4', 'sad5', 'neu4', 'neu5', 'neu8']
  7. ['joy8', 'ten8', 'joy4', 'fear4', 'sad5', 'dis5', 'ins5', 'ten5', 'ten4', 'dis4', 'sad8', 'dis8', 'ins4', 'ins8', 'joy5', 'sad4', 'fear8', 'fear5', 'neu4', 'neu5', 'neu8']
  8. ['neu4', 'neu5', 'neu8', 'dis8', 'sad4', 'fear5', 'ins4', 'ins5', 'ten5', 'dis4', 'sad8', 'fear4', 'ins8', 'joy4', 'ten8', 'fear8', 'dis5', 'sad5', 'ten4', 'joy8', 'joy5']
  9. ['sad5', 'fear4', 'fear8', 'joy4', 'joy8', 'ten5', 'dis8', 'dis5', 'sad4', 'neu4', 'neu8', 'neu5', 'ins8', 'ten8', 'ins4', 'sad8', 'fear5', 'dis4', 'joy5', 'ten4', 'ins5']
  10. ['sad4', 'fear5', 'sad8', 'joy8', 'ten8', 'joy4', 'sad5', 'dis8', 'fear4', 'neu4', 'neu8', 'neu5', 'ten4', 'ten5', 'ins4', 'dis4', 'fear8', 'dis5', 'joy5', 'ins5', 'ins8']
  11. ['joy4', 'ins4', 'joy5', 'fear8', 'dis8', 'sad4', 'ten8', 'ins5', 'ten5', 'sad5', 'sad8', 'fear5', 'ins8', 'ten4', 'joy8', 'neu8', 'neu4', 'neu5', 'fear4', 'dis4', 'dis5']
  12. ['sad8', 'fear5', 'fear8', 'ten8', 'ten5', 'joy8', 'fear4', 'sad4', 'sad5', 'neu4', 'neu8', 'neu5', 'ins8', 'ins4', 'ten4', 'dis5', 'dis8', 'dis4', 'joy5', 'joy4', 'ins5']
  13. ['sad8', 'dis8', 'sad4', 'ten4', 'ten8', 'ins4', 'dis5', 'fear8', 'sad5', 'ten5', 'ins5', 'joy8', 'neu4', 'neu8', 'neu5', 'fear5', 'fear4', 'dis4', 'joy4', 'joy5', 'ins8']
  14. ['ins8', 'ten4', 'ins5', 'neu4', 'neu8', 'neu5', 'sad5', 'dis4', 'sad4', 'ins4', 'ten8', 'ten5', 'dis8', 'sad8', 'fear8', 'joy5', 'joy4', 'joy8', 'fear4', 'fear5', 'dis5']
  15. ['ins8', 'ten5', 'ten8', 'sad8', 'sad4', 'sad5', 'joy4', 'ins4', 'ins5', 'fear8', 'fear5', 'fear4', 'ten4', 'joy5', 'joy8', 'neu5', 'neu4', 'neu8', 'dis4', 'dis5', 'dis8']
  16. ['fear4', 'dis4', 'fear8', 'ins8', 'joy8', 'ten8', 'dis5', 'sad4', 'dis8', 'ins5', 'ins4', 'joy4', 'neu8', 'neu4', 'neu5', 'fear5', 'sad8', 'sad5', 'joy5', 'ten5', 'ten4']
  17. ['ten5', 'ins4', 'ins8', 'dis8', 'fear4', 'sad5', 'ins5', 'joy8', 'ten4', 'sad8', 'fear8', 'fear5', 'ten8', 'joy5', 'joy4', 'sad4', 'dis5', 'dis4', 'neu5', 'neu4', 'neu8']
  18. ['neu4', 'neu5', 'neu8', 'sad4', 'dis8', 'dis5', 'joy4', 'ten4', 'ten5', 'sad5', 'fear5', 'fear4', 'ins5', 'ins4', 'ten8', 'dis4', 'fear8', 'sad8', 'joy8', 'ins8', 'joy5']
  19. ['joy5', 'ten8', 'ins4', 'fear4', 'dis8', 'sad4', 'ten5', 'joy8', 'joy4', 'sad8', 'dis5', 'fear8', 'neu8', 'neu4', 'neu5', 'ins5', 'ten4', 'ins8', 'fear5', 'dis4', 'sad5']
  20. ['joy5', 'ins8', 'joy4', 'neu4', 'neu5', 'neu8', 'fear4', 'sad4', 'fear8', 'ins5', 'ten4', 'ten5', 'dis4', 'sad8', 'sad5', 'ten8', 'ins4', 'joy8', 'dis5', 'fear5', 'dis8']
  21. ['ten8', 'joy4', 'ins5', 'sad4', 'dis4', 'fear8', 'ins8', 'joy8', 'ins4', 'neu8', 'neu4', 'neu5', 'sad5', 'sad8', 'fear5', 'ten5', 'joy5', 'ten4', 'fear4', 'dis5', 'dis8']
  22. ['joy5', 'ten8', 'ten4', 'dis4', 'fear4', 'fear5', 'joy8', 'ten5', 'joy4', 'sad5', 'sad8', 'dis8', 'neu5', 'neu8', 'neu4', 'ins4', 'ins5', 'ins8', 'fear8', 'sad4', 'dis5']
  23. ['neu4', 'neu5', 'neu8', 'dis4', 'fear4', 'sad8', 'ins8', 'joy4', 'ten8', 'fear8', 'fear5', 'sad5', 'ten4', 'ins5', 'joy8', 'dis8', 'sad4', 'dis5', 'ten5', 'joy5', 'ins4']
  24. ['joy5', 'ten5', 'ins4', 'fear4', 'sad8', 'sad4', 'ins5', 'ten4', 'ten8', 'sad5', 'fear5', 'fear8', 'ins8', 'joy8', 'joy4', 'dis8', 'dis5', 'dis4', 'neu8', 'neu4', 'neu5']
  25. ['dis8', 'dis5', 'sad4', 'ins8', 'ten4', 'joy8', 'sad8', 'fear4', 'fear8', 'joy5', 'ins4', 'ten8', 'dis4', 'fear5', 'sad5', 'neu8', 'neu5', 'neu4', 'joy4', 'ins5', 'ten5']
  26. ['fear4', 'sad5', 'fear8', 'ten4', 'ins5', 'joy8', 'dis4', 'dis8', 'sad8', 'ins4', 'joy5', 'joy4', 'dis5', 'sad4', 'fear5', 'ins8', 'ten8', 'ten5', 'neu5', 'neu8', 'neu4']
  27. ['dis4', 'dis5', 'fear4', 'ins8', 'ins4', 'joy5', 'sad8', 'fear8', 'sad5', 'ins5', 'joy4', 'ten8', 'neu4', 'neu8', 'neu5', 'fear5', 'sad4', 'dis8', 'ten4', 'ten5', 'joy8']
  28. ['ten4', 'ins5', 'joy4', 'dis5', 'sad5', 'fear4', 'ins8', 'joy8', 'ins4', 'fear5', 'fear8', 'dis8', 'neu5', 'neu8', 'neu4', 'ten8', 'joy5', 'ten5', 'sad4', 'dis4', 'sad8']
  29. ['joy5', 'ten5', 'ins5', 'neu8', 'neu4', 'neu5', 'fear5', 'sad8', 'sad5', 'joy8', 'ten8', 'joy4', 'fear8', 'fear4', 'dis4', 'ten4', 'ins8', 'ins4', 'dis8', 'dis5', 'sad4']
  30. ['sad8', 'dis8', 'dis5', 'joy5', 'ten4', 'joy4', 'sad5', 'fear5', 'fear8', 'ten8', 'ins8', 'ins4', 'sad4', 'fear4', 'dis4', 'joy8', 'ins5', 'ten5', 'neu5', 'neu8', 'neu4']
  31. ['dis4', 'dis8', 'sad4', 'neu5', 'neu4', 'neu8', 'joy5', 'ins8', 'ins4', 'fear4', 'fear8', 'sad8', 'ins5', 'ten8', 'joy4', 'sad5', 'dis5', 'fear5', 'ten4', 'joy8', 'ten5']
  32. ['joy5', 'joy4', 'ten4', 'sad5', 'fear5', 'fear4', 'ins5', 'ten8', 'ins8', 'dis8', 'dis5', 'sad8', 'ten5', 'ins4', 'joy8', 'sad4', 'fear8', 'dis4', 'neu5', 'neu8', 'neu4']
  33. ['sad5', 'dis8', 'dis5', 'ins5', 'ten5', 'ten4', 'dis4', 'fear4', 'fear5', 'ten8', 'ins8', 'joy4', 'neu5', 'neu4', 'neu8', 'fear8', 'sad4', 'sad8', 'joy5', 'joy8', 'ins4']
  34. ['ten5', 'ins5', 'joy4', 'sad4', 'fear5', 'fear4', 'ten8', 'joy8', 'ins8', 'dis8', 'sad5', 'dis5', 'joy5', 'ten4', 'ins4', 'dis4', 'fear8', 'sad8', 'neu4', 'neu8', 'neu5']
  35. ['sad4', 'fear8', 'dis4', 'ins4', 'ins8', 'joy4', 'neu8', 'neu5', 'neu4', 'sad8', 'fear4', 'dis5', 'ten4', 'ten5', 'ten8', 'sad5', 'dis8', 'fear5', 'joy8', 'ins5', 'joy5']
  36. ['joy5', 'joy4', 'joy8', 'dis4', 'dis8', 'fear5', 'neu5', 'neu8', 'neu4', 'ins4', 'ten5', 'ten4', 'dis5', 'sad5', 'fear4', 'ten8', 'ins8', 'ins5', 'sad4', 'sad8', 'fear8']
  37. ['fear4', 'dis5', 'sad5', 'neu5', 'neu4', 'neu8', 'ins8', 'joy8', 'ten5', 'fear5', 'sad4', 'fear8', 'ins4', 'joy4', 'ten8', 'dis4', 'dis8', 'sad8', 'joy5', 'ins5', 'ten4']
  38. ['joy8', 'ten8', 'ins8', 'fear8', 'sad4', 'fear5', 'ten4', 'ten5', 'joy5', 'sad8', 'dis4', 'fear4', 'neu4', 'neu5', 'neu8', 'ins5', 'ins4', 'joy4', 'sad5', 'dis8', 'dis5']
  39. ['ins4', 'ten8', 'joy4', 'neu5', 'neu8', 'neu4', 'dis8', 'fear4', 'sad8', 'ins5', 'joy8', 'ten4', 'dis5', 'dis4', 'fear5', 'ins8', 'ten5', 'joy5', 'fear8', 'sad5', 'sad4']
  40. ['ins4', 'ten4', 'ins5', 'sad5', 'dis5', 'fear4', 'neu5', 'neu8', 'neu4', 'ten5', 'ins8', 'joy4', 'sad8', 'fear5', 'sad4', 'ten8', 'joy5', 'joy8', 'dis8', 'dis4', 'fear8']
  41. ['ins5', 'ten8', 'ins4', 'dis8', 'sad4', 'dis5', 'joy8', 'ten5', 'ins8', 'neu8', 'neu4', 'neu5', 'fear8', 'dis4', 'fear5', 'joy4', 'joy5', 'ten4', 'sad5', 'sad8', 'fear4']
  42. ['ten8', 'ten4', 'joy8', 'dis8', 'sad5', 'sad4', 'joy5', 'ins8', 'ins4', 'neu4', 'neu5', 'neu8', 'fear4', 'dis4', 'fear5', 'ins5', 'ten5', 'joy4', 'dis5', 'fear8', 'sad8']
  43. ['ins5', 'ten5', 'ins4', 'neu5', 'neu8', 'neu4', 'sad4', 'dis4', 'sad5', 'ins8', 'joy8', 'joy4', 'fear8', 'fear4', 'dis8', 'ten8', 'ten4', 'joy5', 'dis5', 'sad8', 'fear5']
  44. ['sad8', 'dis5', 'dis4', 'joy5', 'ins5', 'joy8', 'sad5', 'sad4', 'fear5', 'ten4', 'ten8', 'ins4', 'neu8', 'neu5', 'neu4', 'dis8', 'fear8', 'fear4', 'joy4', 'ten5', 'ins8']
  45. ['ins5', 'joy8', 'ins8', 'fear8', 'fear5', 'sad5', 'joy5', 'ten8', 'ten5', 'neu5', 'neu4', 'neu8', 'dis5', 'dis8', 'sad4', 'ins4', 'ten4', 'joy4', 'sad8', 'dis4', 'fear4']
  46. ['fear5', 'dis5', 'dis8', 'ins5', 'ten5', 'ten8', 'neu8', 'neu4', 'neu5', 'fear8', 'dis4', 'sad4', 'ten4', 'ins8', 'ins4', 'sad5', 'sad8', 'fear4', 'joy8', 'joy4', 'joy5']
  47. ['ins4', 'joy5', 'joy8', 'sad5', 'fear5', 'dis8', 'neu8', 'neu4', 'neu5', 'ins8', 'ten4', 'joy4', 'fear8', 'dis5', 'sad8', 'ins5', 'ten8', 'ten5', 'sad4', 'dis4', 'fear4']
  48. ['joy5', 'ins8', 'ins5', 'dis8', 'dis5', 'fear5', 'ten4', 'ins4', 'joy8', 'dis4', 'fear4', 'sad5', 'ten8', 'ten5', 'joy4', 'fear8', 'sad8', 'sad4', 'neu8', 'neu4', 'neu5']
  49. ['dis4', 'sad5', 'sad4', 'neu4', 'neu8', 'neu5', 'joy4', 'ten5', 'ten8', 'dis8', 'fear8', 'dis5', 'ins4', 'joy8', 'ten4', 'fear4', 'sad8', 'fear5', 'ins8', 'ins5', 'joy5']
  50. ['ten5', 'ins8', 'ins4', 'neu4', 'neu8', 'neu5', 'fear4', 'fear8', 'dis4', 'joy4', 'ten4', 'ins5', 'fear5', 'sad5', 'dis8', 'ten8', 'joy8', 'joy5', 'sad4', 'sad8', 'dis5']
  51. ['ten8', 'joy8', 'ten5', 'dis8', 'fear5', 'dis4', 'joy5', 'ten4', 'ins4', 'fear4', 'sad4', 'dis5', 'neu8', 'neu4', 'neu5', 'ins8', 'ins5', 'joy4', 'sad5', 'fear8', 'sad8']
  52. ['joy4', 'joy5', 'ins8', 'fear5', 'dis5', 'dis8', 'neu5', 'neu4', 'neu8', 'joy8', 'ins5', 'ten5', 'sad5', 'fear4', 'dis4', 'ten4', 'ten8', 'ins4', 'sad8', 'fear8', 'sad4']
  53. ['neu8', 'neu4', 'neu5', 'dis5', 'sad4', 'fear4', 'joy5', 'ins4', 'ten4', 'fear8', 'sad5', 'sad8', 'ten8', 'joy4', 'ten5', 'fear5', 'dis4', 'dis8', 'joy8', 'ins5', 'ins8']
  • sub54 Imagery sequence:
    ['ten8', 'ten5', 'ten4', 'fear8', 'fear5', 'fear4', 'dis8', 'dis5', 'dis4', 'joy8', 'joy5', 'joy4', 'sad8', 'sad5', 'sad4', 'neu8', 'neu5', 'neu4', 'ins8', 'ins5', 'ins4']

  • sub54 Video sequence:
    ['joy8', 'joy5', 'joy4', 'sad8', 'sad5', 'sad4', 'dis8', 'dis5', 'dis4', 'ins8', 'ins5', 'ins4', 'fear8', 'fear5', 'fear4', 'neu8', 'neu5', 'neu4', 'ten8', 'ten5', 'ten4']

Participants with Missing Trials

For participants with missing trials (sub55-sub60), the experimental sequences differ slightly:

  • sub55: The sequence for imagery and video trials is:
    ['dis5', 'sad4', 'fear8', 'joy4', 'joy5', 'ten8', 'fear5', 'sad8', 'sad5', 'joy8', 'ten5', 'ins8', 'dis8', 'dis4', 'fear4', 'ins5', 'ten4', 'ins4']

  • sub56:

    • Imagery sequence:
      ['joy8', 'joy5', 'ins4', 'sad4', 'fear5', 'dis8', 'neu4', 'neu8', 'neu5', 'ten8', 'joy4', 'ins5', 'fear4', 'dis5', 'sad8', 'ins8', 'ten5', 'ten4', 'sad5']
    • Video sequence:
      ['joy8', 'joy5', 'ins4', 'sad4', 'fear5', 'dis8', 'neu4', 'neu8', 'neu5', 'ten8', 'joy4', 'ins5', 'fear4', 'dis5', 'sad8', 'ins8', 'ten5', 'ten4', 'sad5', 'dis4', 'fear8']
  • sub57:

    • Imagery sequence:
      ['neu8', 'neu5', 'neu4', 'ins4', 'joy5', 'sad5', 'sad8', 'ins8', 'joy4', 'ten8', 'dis5', 'fear8', 'joy8', 'ins5', 'ten5', 'fear4', 'fear5']
    • Video sequence:
      ['neu8', 'ins4', 'joy5', 'ten4', 'sad5', 'sad4', 'sad8', 'ins8', 'joy4', 'ten8', 'dis8', 'dis5', 'ten5', 'fear4', 'fear5']
  • sub58:

    • Imagery sequence:
      ['sad5', 'fear5', 'sad8', 'ins8', 'joy5', 'joy4', 'sad4', 'dis8', 'neu5', 'neu8', 'neu4', 'ten8', 'joy8', 'ten4', 'fear4', 'fear8', 'dis5', 'ins5']
    • Video sequence:
      ['sad5', 'fear5', 'sad8', 'ins8', 'joy5', 'joy4', 'sad4', 'dis8', 'dis4', 'neu5', 'neu8', 'neu4', 'ten8', 'joy8', 'ten4', 'fear4', 'fear8', 'dis5', 'ins5', 'ten5', 'ins4']
  • sub59:

    • Imagery sequence:
      ['dis5', 'fear4', 'ins8', 'fear8', 'dis8', 'fear5', 'neu4', 'neu8', 'joy4', 'ten8', 'ten4', 'dis4', 'sad5', 'sad4', 'joy5']
    • Video sequence:
      ['dis5', 'sad8', 'fear4', 'joy8', 'ins8', 'ins5', 'fear8', 'fear5', 'neu4', 'neu8', 'neu5', 'joy4', 'ten8', 'ten4', 'sad5', 'ten5', 'joy5']
  • sub60:

    • Imagery sequence:
      ['neu5', 'neu4', 'neu8', 'dis5', 'sad4', 'dis4', 'ten4']
    • Video sequence:
      ['neu5', 'neu4', 'neu8', 'dis5', 'sad4', 'dis4', 'ten4', 'ins4', 'ten5']

Guide for labels

  • Using Preprocessed Data If you prefer to work with preprocessed data, navigate to the following directories: \derivatives\sub-idx\ses-ima\eeg or \derivatives\sub-idx\ses-vid\eeg.

Here, you will find:

  • _task-emotion_de.npy
  • _task-emotion_psd.npy
  • _task-emotion_reorder.npy

These files have been preprocessed and reordered in the following sequence: sad-dis-fear-neu-joy-ten-ins. This means:

  • stimuli 1-3: sadness, stimuli 4-6: disgust, stimuli 7-9: fear, stimuli 10-12: neutral, stimuli 13-15: joy, stimuli 16-18: tenderness, stimuli 19-21: inspiration.

Each session (ima or vid) typically includes 21 trials. For information on participants with missing trials, refer to the Participants with Missing Trials section above.

  • Preprocessing Data on Your Own If you'd like to preprocess the data yourself, follow these steps:
  1. Locate Raw Data:

    • The raw EEG data is in the directory: sub-idx\eeg\sub-idx_task-emotion_eeg.edf.
    • Triggers are marked directly in the .edf file's notations.
  2. Map Triggers to Trial Types:

    • Use the mapping information in sub-idx\sub-idx_events to link stim_type (triggers) with trial_type. This file also contains time of the triggers.
  3. Segment Data:

    • Based on the trigger-trial mapping, segment the data accordingly.
  4. Reorder Trials:

    • Use the sequence provided in the Trial Reordering section above to rearrange the trials in your preferred order.

Authors

Xin XU[^1,†], Xinke SHEN[^1,†,*], Xuyang CHEN1, Qingzhu ZHANG1, Sitian WANG1, Yihan LI1, Zongsheng LI[^1,^2], Dan ZHANG2, Mingming ZHANG1, Quanying LIU[^1,*]

Corresponding authors: Quanying LIU ([email protected]); Xinke SHEN ([email protected])
† These authors contributed equally to this work.

This approach allows flexibility for custom analyses while ensuring alignment with the established trial order. You can also refer to our preprocess.py in /codes folder, especially the segementation part.

Footnotes

  1. Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China 2 3 4 5

  2. Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, 100084, China