forked from pllk/cphb
-
Notifications
You must be signed in to change notification settings - Fork 1
/
chapter30.tex
846 lines (752 loc) · 24.8 KB
/
chapter30.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
\chapter{Algoritmos de linha de varredura}
\index{linha de varredura}
Muitos problemas geométricos podem ser resolvidos usando
algoritmos de \key{linha de varredura}.
A ideia em tais algoritmos é representar
uma instância do problema como um conjunto de eventos que correspondem
a pontos no plano.
Os eventos são processados em ordem crescente
de acordo com suas coordenadas x ou y.
Como exemplo, considere o seguinte problema:
Há uma empresa que tem $n$ funcionários,
e sabemos para cada funcionário seus horários de chegada e
saída em um determinado dia.
Nossa tarefa é calcular o número máximo de
funcionários que estavam no escritório ao mesmo tempo.
O problema pode ser resolvido modelando a situação
de forma que cada funcionário receba dois eventos que
correspondem aos seus horários de chegada e saída.
Após ordenar os eventos, nós os percorremos
e mantemos o controle do número de pessoas no escritório.
Por exemplo, a tabela
\begin{center}
\begin{tabular}{ccc}
pessoa & horário de chegada & horário de saída \\
\hline
João & 10 & 15 \\
Maria & 6 & 12 \\
Pedro & 14 & 16 \\
Lisa & 5 & 13 \\
\end{tabular}
\end{center}
corresponde aos seguintes eventos:
\begin{center}
\begin{tikzpicture}[scale=0.6]
\draw (0,0) rectangle (17,-6.5);
\path[draw,thick,-] (10,-1) -- (15,-1);
\path[draw,thick,-] (6,-2.5) -- (12,-2.5);
\path[draw,thick,-] (14,-4) -- (16,-4);
\path[draw,thick,-] (5,-5.5) -- (13,-5.5);
\draw[fill] (10,-1) circle [radius=0.05];
\draw[fill] (15,-1) circle [radius=0.05];
\draw[fill] (6,-2.5) circle [radius=0.05];
\draw[fill] (12,-2.5) circle [radius=0.05];
\draw[fill] (14,-4) circle [radius=0.05];
\draw[fill] (16,-4) circle [radius=0.05];
\draw[fill] (5,-5.5) circle [radius=0.05];
\draw[fill] (13,-5.5) circle [radius=0.05];
\node at (2,-1) {João};
\node at (2,-2.5) {Maria};
\node at (2,-4) {Pedro};
\node at (2,-5.5) {Lisa};
\end{tikzpicture}
\end{center}
Percorremos os eventos da esquerda para a direita
e mantemos um contador.
Sempre que uma pessoa chega, aumentamos
o valor do contador em um,
e quando uma pessoa sai,
diminuímos o valor do contador em um.
A resposta para o problema é o valor máximo
do contador durante o algoritmo.
No exemplo, os eventos são processados da seguinte forma:
\begin{center}
\begin{tikzpicture}[scale=0.6]
\path[draw,thick,->] (0.5,0.5) -- (16.5,0.5);
\draw (0,0) rectangle (17,-6.5);
\path[draw,thick,-] (10,-1) -- (15,-1);
\path[draw,thick,-] (6,-2.5) -- (12,-2.5);
\path[draw,thick,-] (14,-4) -- (16,-4);
\path[draw,thick,-] (5,-5.5) -- (13,-5.5);
\draw[fill] (10,-1) circle [radius=0.05];
\draw[fill] (15,-1) circle [radius=0.05];
\draw[fill] (6,-2.5) circle [radius=0.05];
\draw[fill] (12,-2.5) circle [radius=0.05];
\draw[fill] (14,-4) circle [radius=0.05];
\draw[fill] (16,-4) circle [radius=0.05];
\draw[fill] (5,-5.5) circle [radius=0.05];
\draw[fill] (13,-5.5) circle [radius=0.05];
\node at (2,-1) {João};
\node at (2,-2.5) {Maria};
\node at (2,-4) {Pedro};
\node at (2,-5.5) {Lisa};
\path[draw,dashed] (10,0)--(10,-6.5);
\path[draw,dashed] (15,0)--(15,-6.5);
\path[draw,dashed] (6,0)--(6,-6.5);
\path[draw,dashed] (12,0)--(12,-6.5);
\path[draw,dashed] (14,0)--(14,-6.5);
\path[draw,dashed] (16,0)--(16,-6.5);
\path[draw,dashed] (5,0)--(5,-6.5);
\path[draw,dashed] (13,0)--(13,-6.5);
\node at (10,-7) {$+$};
\node at (15,-7) {$-$};
\node at (6,-7) {$+$};
\node at (12,-7) {$-$};
\node at (14,-7) {$+$};
\node at (16,-7) {$-$};
\node at (5,-7) {$+$};
\node at (13,-7) {$-$};
\node at (10,-8) {$3$};
\node at (15,-8) {$1$};
\node at (6,-8) {$2$};
\node at (12,-8) {$2$};
\node at (14,-8) {$2$};
\node at (16,-8) {$0$};
\node at (5,-8) {$1$};
\node at (13,-8) {$1$};
\end{tikzpicture}
\end{center}
Os símbolos $+$ e $-$ indicam se o
valor do contador aumenta ou diminui,
e o valor do contador é mostrado abaixo.
O valor máximo do contador é 3
entre a chegada de João e a saída de Maria.
O tempo de execução do algoritmo é $O(n \log n)$,
porque ordenar os eventos leva tempo $O(n \log n)$
e o restante do algoritmo leva tempo $O(n)$.
\section{Pontos de interseção}
\index{ponto de interseção}
Dado um conjunto de $n$ segmentos de linha, cada um deles sendo
horizontal ou vertical, considere o problema de
contar o número total de pontos de interseção.
Por exemplo, quando os segmentos de linha são
\begin{center}
\begin{tikzpicture}[scale=0.5]
\path[draw,thick,-] (0,2) -- (5,2);
\path[draw,thick,-] (1,4) -- (6,4);
\path[draw,thick,-] (6,3) -- (10,3);
\path[draw,thick,-] (2,1) -- (2,6);
\path[draw,thick,-] (8,2) -- (8,5);
\end{tikzpicture}
\end{center}
existem três pontos de interseção:
\begin{center}
\begin{tikzpicture}[scale=0.5]
\path[draw,thick,-] (0,2) -- (5,2);
\path[draw,thick,-] (1,4) -- (6,4);
\path[draw,thick,-] (6,3) -- (10,3);
\path[draw,thick,-] (2,1) -- (2,6);
\path[draw,thick,-] (8,2) -- (8,5);
\draw[fill] (2,2) circle [radius=0.15];
\draw[fill] (2,4) circle [radius=0.15];
\draw[fill] (8,3) circle [radius=0.15];
\end{tikzpicture}
\end{center}
É fácil resolver o problema em tempo $O(n^2)$,
porque podemos percorrer todos os pares possíveis de segmentos de linha
e verificar se eles se cruzam.
No entanto, podemos resolver o problema de forma mais eficiente
em tempo $O(n \log n)$ usando um algoritmo de linha de varredura
e uma estrutura de dados de consulta de intervalo.
A ideia é processar os pontos finais dos segmentos de linha
da esquerda para a direita e
focar em três tipos de eventos:
\begin{enumerate}[noitemsep]
\item[(1)] segmento horizontal começa
\item[(2)] segmento horizontal termina
\item[(3)] segmento vertical
\end{enumerate}
Os seguintes eventos correspondem ao exemplo:
\begin{center}
\begin{tikzpicture}[scale=0.6]
\path[draw,dashed] (0,2) -- (5,2);
\path[draw,dashed] (1,4) -- (6,4);
\path[draw,dashed] (6,3) -- (10,3);
\path[draw,dashed] (2,1) -- (2,6);
\path[draw,dashed] (8,2) -- (8,5);
\node at (0,2) {$1$};
\node at (5,2) {$2$};
\node at (1,4) {$1$};
\node at (6,4) {$2$};
\node at (6,3) {$1$};
\node at (10,3) {$2$};
\node at (2,3.5) {$3$};
\node at (8,3.5) {$3$};
\end{tikzpicture}
\end{center}
Percorremos os eventos da esquerda para a direita
e usamos uma estrutura de dados que mantém um conjunto de
coordenadas y onde há um segmento horizontal ativo.
No evento 1, adicionamos a coordenada y do segmento
ao conjunto e, no evento 2, removemos a
coordenada y do conjunto.
Os pontos de interseção são calculados no evento 3.
Quando há um segmento vertical entre os pontos
$y_1$ e $y_2$, contamos o número de segmentos horizontais ativos cuja coordenada y está entre
$y_1$ e $y_2$, e adicionamos esse número ao total
de pontos de interseção.
Para armazenar as coordenadas y dos segmentos horizontais,
podemos usar uma árvore de índice binário ou árvore de segmentos,
possivelmente com compactação de índice.
Quando tais estruturas são usadas, o processamento de cada evento
leva $O(\log n)$, então o tempo total de execução
do algoritmo é $O(n \log n)$.
\section{Problema do par mais próximo}
\index{par mais próximo}
Dado um conjunto de $n$ pontos, nosso próximo problema é
encontrar dois pontos cuja distância euclidiana seja mínima.
Por exemplo, se os pontos são
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0)--(12,0)--(12,4)--(0,4)--(0,0);
\draw (1,2) circle [radius=0.1];
\draw (3,1) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5.5,1.5) circle [radius=0.1];
\draw (6,2.5) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (9,1.5) circle [radius=0.1];
\draw (10,2) circle [radius=0.1];
\draw (1.5,3.5) circle [radius=0.1];
\draw (1.5,1) circle [radius=0.1];
\draw (2.5,3) circle [radius=0.1];
\draw (4.5,1.5) circle [radius=0.1];
\draw (5.25,0.5) circle [radius=0.1];
\draw (6.5,2) circle [radius=0.1];
\end{tikzpicture}
\end{center}
\begin{samepage}
devemos encontrar os seguintes pontos:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0)--(12,0)--(12,4)--(0,4)--(0,0);
\draw (1,2) circle [radius=0.1];
\draw (3,1) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5.5,1.5) circle [radius=0.1];
\draw[fill] (6,2.5) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (9,1.5) circle [radius=0.1];
\draw (10,2) circle [radius=0.1];
\draw (1.5,3.5) circle [radius=0.1];
\draw (1.5,1) circle [radius=0.1];
\draw (2.5,3) circle [radius=0.1];
\draw (4.5,1.5) circle [radius=0.1];
\draw (5.25,0.5) circle [radius=0.1];
\draw[fill] (6.5,2) circle [radius=0.1];
\end{tikzpicture}
\end{center}
\end{samepage}
Este é outro exemplo de um problema
que pode ser resolvido em tempo $O(n \log n)$
usando um algoritmo de linha de varredura\footnote{Além desta abordagem,
também existe um
algoritmo de divisão e conquista de tempo $O(n \log n)$ \cite{sha75}
que divide os pontos em dois conjuntos e resolve recursivamente
o problema para ambos os conjuntos.}.
Percorremos os pontos da esquerda para a direita
e mantemos um valor $d$: a distância mínima
entre dois pontos vistos até agora.
Em cada ponto, encontramos o ponto mais próximo à esquerda.
Se a distância for menor que $d$, é a
nova distância mínima e atualizamos
o valor de $d$.
Se o ponto atual é $(x,y)$
e há um ponto à esquerda
a uma distância menor que $d$,
a coordenada x de tal ponto deve
estar entre $[x-d,x]$ e a coordenada y
deve estar entre $[y-d,y+d]$.
Assim, basta considerar apenas os pontos
que estão localizados nesses intervalos,
o que torna o algoritmo eficiente.
Por exemplo, na imagem a seguir, a
região marcada com linhas tracejadas contém
os pontos que podem estar a uma distância de $d$
do ponto ativo:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0)--(12,0)--(12,4)--(0,4)--(0,0);
\draw (1,2) circle [radius=0.1];
\draw (3,1) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5.5,1.5) circle [radius=0.1];
\draw (6,2.5) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (9,1.5) circle [radius=0.1];
\draw (10,2) circle [radius=0.1];
\draw (1.5,3.5) circle [radius=0.1];
\draw (1.5,1) circle [radius=0.1];
\draw (2.5,3) circle [radius=0.1];
\draw (4.5,1.5) circle [radius=0.1];
\draw (5.25,0.5) circle [radius=0.1];
\draw[fill] (6.5,2) circle [radius=0.1];
\draw[dashed] (6.5,0.75)--(6.5,3.25);
\draw[dashed] (5.25,0.75)--(5.25,3.25);
\draw[dashed] (5.25,0.75)--(6.5,0.75);
\draw[dashed] (5.25,3.25)--(6.5,3.25);
\draw [decoration={brace}, decorate, line width=0.3mm] (5.25,3.5) -- (6.5,3.5);
\node at (5.875,4) {$d$};
\draw [decoration={brace}, decorate, line width=0.3mm] (6.75,3.25) -- (6.75,2);
\node at (7.25,2.625) {$d$};
\end{tikzpicture}
\end{center}
A eficiência do algoritmo é baseada no fato
de que a região sempre contém
apenas $O(1)$ pontos.
Podemos percorrer esses pontos em tempo $O(\log n)$
mantendo um conjunto de pontos cuja coordenada x
está entre $[x-d,x]$, em ordem crescente de acordo
com suas coordenadas y.
A complexidade de tempo do algoritmo é $O(n \log n)$,
porque percorremos $n$ pontos e
encontramos para cada ponto o ponto mais próximo à esquerda
em tempo $O(\log n)$.
\section{Problema do fecho convexo}
Um \key{fecho convexo} é o menor polígono convexo
que contém todos os pontos de um determinado conjunto.
Convexidade significa que um segmento de linha entre
quaisquer dois vértices do polígono está completamente
dentro do polígono.
\begin{samepage}
Por exemplo, para os pontos
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\end{tikzpicture}
\end{center}
\end{samepage}
o fecho convexo é o seguinte:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0)--(4,-1)--(7,1)--(6,3)--(2,4)--(0,2)--(0,0);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\end{tikzpicture}
\end{center}
\index{algoritmo de Andrew}
O \key{algoritmo de Andrew} \cite{and79} fornece
uma maneira fácil de
construir o fecho convexo para um conjunto de pontos
em tempo $O(n \log n)$.
O algoritmo primeiro localiza os pontos mais à esquerda
e mais à direita, e então
constrói o fecho convexo em duas partes:
primeiro o casco superior e depois o casco inferior.
Ambas as partes são semelhantes, então podemos nos concentrar em
construir o casco superior.
Primeiro, ordenamos os pontos primeiramente de acordo
com as coordenadas x e secundariamente de acordo com as coordenadas y.
Depois disso, percorremos os pontos e
adicionamos cada ponto ao casco.
Sempre depois de adicionar um ponto ao casco,
certificamo-nos de que o último segmento de linha
no casco não vire à esquerda.
Enquanto ele virar à esquerda, removemos repetidamente o
penúltimo ponto do casco.
As figuras a seguir mostram como
o algoritmo de Andrew funciona:
\\
\begin{tabular}{ccccccc}
\\
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(1,1);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(1,1)--(2,2);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,2);
\end{tikzpicture}
\\
1 & & 2 & & 3 & & 4 \\
\end{tabular}
\\
\begin{tabular}{ccccccc}
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,2)--(2,4);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,-1);
\end{tikzpicture}
\\
5 & & 6 & & 7 & & 8 \\
\end{tabular}
\\
\begin{tabular}{ccccccc}
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,-1)--(4,0);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,0);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,0)--(4,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,3);
\end{tikzpicture}
\\
9 & & 10 & & 11 & & 12 \\
\end{tabular}
\\
\begin{tabular}{ccccccc}
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(5,2);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(5,2)--(6,1);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(5,2)--(6,1)--(6,3);
\end{tikzpicture}
\\
13 & & 14 & & 15 & & 16 \\
\end{tabular}
\\
\begin{tabular}{ccccccc}
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(5,2)--(6,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(6,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(6,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(6,3)--(7,1);
\end{tikzpicture}
\\
17 & & 18 & & 19 & & 20
\end{tabular}