-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
cssprad1
committed
Mar 15, 2024
1 parent
f6a5741
commit 4e822b2
Showing
1 changed file
with
44 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -7,7 +7,7 @@ | |
"source": [ | ||
"# Satvision-TOA Reconstruction Notebook\n", | ||
"\n", | ||
"Version: 02.20.24\n", | ||
"Version: 03.15.24\n", | ||
"\n", | ||
"Env: `Python [conda env:ilab-pytorch]`" | ||
] | ||
|
@@ -59,13 +59,11 @@ | |
"\n", | ||
"from pytorch_caney.config import get_config\n", | ||
"\n", | ||
"from pytorch_caney.training.mim_utils import load_checkpoint, load_pretrained\n", | ||
"\n", | ||
"from pytorch_caney.models.build import build_model\n", | ||
"\n", | ||
"from pytorch_caney.ptc_logging import create_logger\n", | ||
"\n", | ||
"from pytorch_caney.data.datamodules import mim_webdataset_datamodule\n", | ||
"from pytorch_caney.data.datasets.mim_modis_22m_dataset import MODIS22MDataset\n", | ||
"\n", | ||
"from pytorch_caney.data.transforms import SimmimTransform, SimmimMaskGenerator\n", | ||
"\n", | ||
|
@@ -93,10 +91,21 @@ | |
"\n", | ||
"git lfs install\n", | ||
"\n", | ||
"git clone [email protected]:nasa-cisto-data-science-group/satvision-toa-base\n", | ||
"git clone [email protected]:nasa-cisto-data-science-group/satvision-toa-huge\n", | ||
"```\n", | ||
"\n", | ||
"Note: If using git w/ ssh, make sure you have ssh keys enabled to clone using ssh auth. " | ||
"Note: If using git w/ ssh, make sure you have ssh keys enabled to clone using ssh auth. \n", | ||
"\n", | ||
"If experiencing ssh-related authentication issues:\n", | ||
"```bash\n", | ||
"eval `ssh-agent -s` # starts ssh-agent\n", | ||
"\n", | ||
"ssh-add -l # is your ssh key added to the agent?\n", | ||
"\n", | ||
"ssh-add ~/.ssh/id_xxxx # adds ssh ID to ssh-agent\n", | ||
"\n", | ||
"ssh -T [email protected] # Should return \"Hi <user-id>, welcome to Hugging Face.\"\n", | ||
"```" | ||
] | ||
}, | ||
{ | ||
|
@@ -106,10 +115,10 @@ | |
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"MODEL_PATH: str = '../../satvision-toa-base/satvision-toa_84M_2M_100.pth'\n", | ||
"CONFIG_PATH: str = '../../satvision-toa-base/mim_pretrain_swinv2_satvision-toa_base_192_window12_800ep.yaml'\n", | ||
"MODEL_PATH: str = '../../satvision-toa-huge/ckpt_epoch_100.pth'\n", | ||
"CONFIG_PATH: str = '../../satvision-toa-huge/mim_pretrain_swinv2_satvision_huge_192_window12_200ep.yaml'\n", | ||
"\n", | ||
"BATCH_SIZE: int = 64 # Want to report loss on every image? Change to 1.\n", | ||
"BATCH_SIZE: int = 1 # Want to report loss on every image? Change to 1.\n", | ||
"OUTPUT: str = '.'\n", | ||
"TAG: str = 'satvision-base-toa-reconstruction'\n", | ||
"DATA_PATH: str = '/explore/nobackup/projects/ilab/projects/3DClouds/data/mosaic-v3/webdatasets'\n", | ||
|
@@ -191,7 +200,19 @@ | |
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dataloader = mim_webdataset_datamodule.build_mim_dataloader(config, logger)" | ||
"dataset = MODIS22MDataset(config,\n", | ||
" config.DATA.DATA_PATHS,\n", | ||
" split=\"train\",\n", | ||
" img_size=config.DATA.IMG_SIZE,\n", | ||
" transform=SimmimTransform(config),\n", | ||
" batch_size=config.DATA.BATCH_SIZE).dataset()\n", | ||
"\n", | ||
"dataloader = torch.utils.data.DataLoader(\n", | ||
" dataset,\n", | ||
" batch_size=None, # Change if not using webdataset as underlying dataset type\n", | ||
" num_workers=15,\n", | ||
" shuffle=False,\n", | ||
" pin_memory=True,)" | ||
] | ||
}, | ||
{ | ||
|
@@ -238,7 +259,7 @@ | |
" inputs.extend(img.cpu())\n", | ||
" masks.extend(mask.cpu())\n", | ||
" outputs.extend(img_recon.cpu())\n", | ||
" losses.append(losses)\n", | ||
" losses.append(loss.cpu())\n", | ||
" \n", | ||
" return inputs, outputs, masks, losses\n", | ||
"\n", | ||
|
@@ -261,24 +282,26 @@ | |
"\n", | ||
"\n", | ||
"def process_prediction(image, img_recon, mask, rgb_index):\n", | ||
" img_normed = minmax_norm(image.numpy())\n", | ||
"\n", | ||
" mask = process_mask(mask)\n", | ||
" \n", | ||
" red_idx = rgb_index[0]\n", | ||
" blue_idx = rgb_index[1]\n", | ||
" green_idx = rgb_index[2]\n", | ||
"\n", | ||
" rgb_image = np.stack((img_normed[red_idx, :, :],\n", | ||
" img_normed[blue_idx, :, :],\n", | ||
" img_normed[green_idx, :, :]),\n", | ||
" axis=-1)\n", | ||
" image = image.numpy()\n", | ||
" rgb_image = np.stack((image[red_idx, :, :],\n", | ||
" image[blue_idx, :, :],\n", | ||
" image[green_idx, :, :]),\n", | ||
" axis=-1)\n", | ||
" rgb_image = minmax_norm(rgb_image)\n", | ||
"\n", | ||
" img_recon = minmax_norm(img_recon.numpy())\n", | ||
" img_recon = img_recon.numpy()\n", | ||
" rgb_image_recon = np.stack((img_recon[red_idx, :, :],\n", | ||
" img_recon[blue_idx, :, :],\n", | ||
" img_recon[green_idx, :, :]),\n", | ||
" axis=-1)\n", | ||
" rgb_image_recon = minmax_norm(rgb_image_recon)\n", | ||
"\n", | ||
" rgb_masked = np.where(mask == 0, rgb_image, rgb_image_recon)\n", | ||
" rgb_image_masked = np.where(mask == 1, 0, rgb_image)\n", | ||
|
@@ -336,7 +359,7 @@ | |
"source": [ | ||
"%%time\n", | ||
"\n", | ||
"inputs, outputs, masks, losses = predict(model, dataloader, num_batches=5)" | ||
"inputs, outputs, masks, losses = predict(model, dataloader, num_batches=64)" | ||
] | ||
}, | ||
{ | ||
|
@@ -354,9 +377,9 @@ | |
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pdf_path = '../../satvision-toa-reconstruction-pdf-02.20.pdf'\n", | ||
"num_samples = 10 # Number of random samples from the predictions\n", | ||
"rgb_index = [0, 3, 2] # Indices of [Red band, Blue band, Green band]\n", | ||
"pdf_path = '../../satvision-toa-reconstruction-pdf-03.15.16patch.huge.001.pdf'\n", | ||
"num_samples = 25 # Number of random samples from the predictions\n", | ||
"rgb_index = [0, 2, 1] # Indices of [Red band, Blue band, Green band]\n", | ||
"\n", | ||
"plot_export_pdf(pdf_path, num_samples, inputs, outputs, masks, rgb_index)" | ||
] | ||
|