-
Notifications
You must be signed in to change notification settings - Fork 45
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
New module accepts no arguments in its default function OpenSearch Client is now imported from architect-functions-search
- Loading branch information
1 parent
726dfd7
commit 817c094
Showing
2 changed files
with
280 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
/* | ||
This file contains API calls to the OpenSearch cluster to register and deploy an ml model to the opensearch cluster. | ||
It also creates a neural ingest pipeline to allow for ingesting of documents into a knn index. | ||
*/ | ||
import { search as getSearch } from 'architect-functions-search' | ||
|
||
export default async function () { | ||
const client = await getSearch() | ||
|
||
//Set cluster settings | ||
const cluster_settings_request = { | ||
method: 'PUT', | ||
path: '/_cluster/settings', | ||
body: { | ||
persistent: { | ||
plugins: { | ||
ml_commons: { | ||
only_run_on_ml_node: 'false', | ||
model_access_control_enabled: 'true', | ||
native_memory_threshold: '99', | ||
}, | ||
}, | ||
}, | ||
}, | ||
} | ||
|
||
try { | ||
const resp = await client.transport.request(cluster_settings_request) | ||
|
||
if (resp && resp.statusCode == 200) { | ||
console.log('Updated ML-related cluster settings.') | ||
} else { | ||
console.log( | ||
'Error. Could not update cluster settings. Returned with response: ', | ||
resp | ||
) | ||
return | ||
} | ||
} catch (e) { | ||
console.log('Error: ', e) | ||
return | ||
} | ||
|
||
//Register model group | ||
const register_model_group_request = { | ||
method: 'POST', | ||
path: '/_plugins/_ml/model_groups/_register', | ||
body: { | ||
name: 'NLP_model_group', | ||
description: 'A model group for NLP models', | ||
}, | ||
} | ||
|
||
let model_group_id | ||
try { | ||
const resp = await client.transport.request(register_model_group_request) | ||
|
||
if (resp && resp.statusCode == 200) { | ||
model_group_id = resp.body.model_group_id | ||
console.log(`Registered model group with id: ${model_group_id}`) | ||
} else { | ||
console.log( | ||
'Error. Could not register model group. Returned with response: ', | ||
resp | ||
) | ||
return | ||
} | ||
} catch (e) { | ||
console.log('Error: ', e) | ||
return | ||
} | ||
|
||
//Register model to model group | ||
const register_model_request = { | ||
method: 'POST', | ||
path: '/_plugins/_ml/models/_register', | ||
body: { | ||
name: 'huggingface/sentence-transformers/all-MiniLM-L6-v2', | ||
version: '1.0.1', | ||
model_group_id, | ||
model_format: 'TORCH_SCRIPT', | ||
}, | ||
} | ||
|
||
let task_id | ||
try { | ||
const resp = await client.transport.request(register_model_request) | ||
|
||
if (resp && resp.statusCode == 200) { | ||
task_id = resp.body.task_id | ||
console.log('Registering model to model group. Task ID is: ', task_id) | ||
} else { | ||
console.log( | ||
'Error. Could not register model to model group. Returned with response: ', | ||
resp | ||
) | ||
return | ||
} | ||
} catch (e) { | ||
console.log('Error: ', e) | ||
return | ||
} | ||
|
||
//Check status of model registration | ||
const check_model_registration_request = { | ||
method: 'GET', | ||
path: `_plugins/_ml/tasks/${task_id}`, | ||
} | ||
|
||
let model_id = '' | ||
try { | ||
let resp | ||
do { | ||
resp = await client.transport.request(check_model_registration_request) | ||
|
||
if (resp && resp.statusCode == 200) { | ||
console.log('Checking model registration status...') | ||
|
||
if (resp.body.state === 'COMPLETED') { | ||
model_id = resp.body.model_id | ||
console.log('Model registration completed. Model ID: ', model_id) | ||
} else { | ||
await new Promise((resolve) => setTimeout(resolve, 2000)) // Wait for 2 seconds before checking again | ||
} | ||
} else { | ||
console.log( | ||
'Error. Could not check model registration status. Returned with response: ', | ||
resp | ||
) | ||
return | ||
} | ||
} while (resp.body.state !== 'COMPLETED') | ||
} catch (e) { | ||
console.log('Error: ', e) | ||
return | ||
} | ||
|
||
//Deploy model | ||
const deploy_model_request = { | ||
method: 'POST', | ||
path: `/_plugins/_ml/models/${model_id}/_deploy`, | ||
} | ||
|
||
try { | ||
const resp = await client.transport.request(deploy_model_request) | ||
|
||
if (resp && resp.statusCode == 200) { | ||
task_id = resp.body.task_id | ||
console.log('Deploying model. Task ID is: ', task_id) | ||
} else { | ||
console.log( | ||
'Error. Could not deploy model. Returned with response: ', | ||
resp | ||
) | ||
return | ||
} | ||
} catch (e) { | ||
console.log('Error: ', e) | ||
return | ||
} | ||
|
||
//Check status of model deployment | ||
const check_model_deployment_request = { | ||
method: 'GET', | ||
path: `_plugins/_ml/tasks/${task_id}`, | ||
} | ||
|
||
try { | ||
let resp | ||
do { | ||
resp = await client.transport.request(check_model_deployment_request) | ||
|
||
if (resp && resp.statusCode == 200) { | ||
console.log('Checking model deployment status...') | ||
|
||
if (resp.body.state === 'COMPLETED') { | ||
model_id = resp.body.model_id | ||
console.log('Model deployment completed. Model ID: ', model_id) | ||
} else { | ||
await new Promise((resolve) => setTimeout(resolve, 2000)) // Wait for 2 seconds before checking again | ||
} | ||
} else { | ||
console.log( | ||
'Error. Could not check model deployment status. Returned with response: ', | ||
resp | ||
) | ||
return | ||
} | ||
} while (resp.body.state !== 'COMPLETED') | ||
} catch (e) { | ||
console.log('Error: ', e) | ||
return | ||
} | ||
|
||
//Create neural ingest pipeline | ||
const pipeline_name = 'nlp-ingest-pipeline' | ||
const create_ingest_pipeline_request = { | ||
method: 'PUT', | ||
path: `/_ingest/pipeline/${pipeline_name}`, | ||
body: { | ||
description: 'An NLP ingest pipeline', | ||
processors: [ | ||
{ | ||
text_embedding: { | ||
model_id, | ||
field_map: { | ||
body: 'circular_embedding', | ||
}, | ||
}, | ||
}, | ||
], | ||
}, | ||
} | ||
|
||
try { | ||
const resp = await client.transport.request(create_ingest_pipeline_request) | ||
|
||
if (resp && resp.statusCode == 200) { | ||
console.log('Successfully created neural ingest pipeline.') | ||
} else { | ||
console.log( | ||
'Error. Could not create neural ingest pipeline. Returned with response: ', | ||
resp | ||
) | ||
return | ||
} | ||
} catch (e) { | ||
console.log('Error: ', e) | ||
return | ||
} | ||
|
||
//Create knn index | ||
await client.indices.create({ | ||
index: 'circulars', | ||
body: { | ||
settings: { | ||
'index.knn': true, | ||
default_pipeline: pipeline_name, | ||
}, | ||
mappings: { | ||
properties: { | ||
subject: { | ||
type: 'text', | ||
}, | ||
submittedHow: { | ||
type: 'text', | ||
}, | ||
bibcode: { | ||
type: 'text', | ||
}, | ||
createdOn: { | ||
type: 'long', | ||
}, | ||
circularId: { | ||
type: 'integer', | ||
}, | ||
submitter: { | ||
type: 'text', | ||
}, | ||
circular_embedding: { | ||
type: 'knn_vector', | ||
dimension: 384, | ||
method: { | ||
engine: 'lucene', | ||
space_type: 'l2', | ||
name: 'hnsw', | ||
parameters: {}, | ||
}, | ||
}, | ||
body: { | ||
type: 'text', | ||
}, | ||
}, | ||
}, | ||
}, | ||
}) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters