Skip to content

Commit

Permalink
Change openSearchAPI file
Browse files Browse the repository at this point in the history
New module accepts no arguments in its default function

OpenSearch Client is now imported from architect-functions-search
  • Loading branch information
ronitagarwala01 committed Nov 27, 2023
1 parent 726dfd7 commit 817c094
Show file tree
Hide file tree
Showing 2 changed files with 280 additions and 3 deletions.
277 changes: 277 additions & 0 deletions openSearchAPI.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
/*
This file contains API calls to the OpenSearch cluster to register and deploy an ml model to the opensearch cluster.
It also creates a neural ingest pipeline to allow for ingesting of documents into a knn index.
*/
import { search as getSearch } from 'architect-functions-search'

export default async function () {
const client = await getSearch()

//Set cluster settings
const cluster_settings_request = {
method: 'PUT',
path: '/_cluster/settings',
body: {
persistent: {
plugins: {
ml_commons: {
only_run_on_ml_node: 'false',
model_access_control_enabled: 'true',
native_memory_threshold: '99',
},
},
},
},
}

try {
const resp = await client.transport.request(cluster_settings_request)

if (resp && resp.statusCode == 200) {
console.log('Updated ML-related cluster settings.')
} else {
console.log(
'Error. Could not update cluster settings. Returned with response: ',
resp
)
return
}
} catch (e) {
console.log('Error: ', e)
return
}

//Register model group
const register_model_group_request = {
method: 'POST',
path: '/_plugins/_ml/model_groups/_register',
body: {
name: 'NLP_model_group',
description: 'A model group for NLP models',
},
}

let model_group_id
try {
const resp = await client.transport.request(register_model_group_request)

if (resp && resp.statusCode == 200) {
model_group_id = resp.body.model_group_id
console.log(`Registered model group with id: ${model_group_id}`)
} else {
console.log(
'Error. Could not register model group. Returned with response: ',
resp
)
return
}
} catch (e) {
console.log('Error: ', e)
return
}

//Register model to model group
const register_model_request = {
method: 'POST',
path: '/_plugins/_ml/models/_register',
body: {
name: 'huggingface/sentence-transformers/all-MiniLM-L6-v2',
version: '1.0.1',
model_group_id,
model_format: 'TORCH_SCRIPT',
},
}

let task_id
try {
const resp = await client.transport.request(register_model_request)

if (resp && resp.statusCode == 200) {
task_id = resp.body.task_id
console.log('Registering model to model group. Task ID is: ', task_id)
} else {
console.log(
'Error. Could not register model to model group. Returned with response: ',
resp
)
return
}
} catch (e) {
console.log('Error: ', e)
return
}

//Check status of model registration
const check_model_registration_request = {
method: 'GET',
path: `_plugins/_ml/tasks/${task_id}`,
}

let model_id = ''
try {
let resp
do {
resp = await client.transport.request(check_model_registration_request)

if (resp && resp.statusCode == 200) {
console.log('Checking model registration status...')

if (resp.body.state === 'COMPLETED') {
model_id = resp.body.model_id
console.log('Model registration completed. Model ID: ', model_id)
} else {
await new Promise((resolve) => setTimeout(resolve, 2000)) // Wait for 2 seconds before checking again
}
} else {
console.log(
'Error. Could not check model registration status. Returned with response: ',
resp
)
return
}
} while (resp.body.state !== 'COMPLETED')
} catch (e) {
console.log('Error: ', e)
return
}

//Deploy model
const deploy_model_request = {
method: 'POST',
path: `/_plugins/_ml/models/${model_id}/_deploy`,
}

try {
const resp = await client.transport.request(deploy_model_request)

if (resp && resp.statusCode == 200) {
task_id = resp.body.task_id
console.log('Deploying model. Task ID is: ', task_id)
} else {
console.log(
'Error. Could not deploy model. Returned with response: ',
resp
)
return
}
} catch (e) {
console.log('Error: ', e)
return
}

//Check status of model deployment
const check_model_deployment_request = {
method: 'GET',
path: `_plugins/_ml/tasks/${task_id}`,
}

try {
let resp
do {
resp = await client.transport.request(check_model_deployment_request)

if (resp && resp.statusCode == 200) {
console.log('Checking model deployment status...')

if (resp.body.state === 'COMPLETED') {
model_id = resp.body.model_id
console.log('Model deployment completed. Model ID: ', model_id)
} else {
await new Promise((resolve) => setTimeout(resolve, 2000)) // Wait for 2 seconds before checking again
}
} else {
console.log(
'Error. Could not check model deployment status. Returned with response: ',
resp
)
return
}
} while (resp.body.state !== 'COMPLETED')
} catch (e) {
console.log('Error: ', e)
return
}

//Create neural ingest pipeline
const pipeline_name = 'nlp-ingest-pipeline'
const create_ingest_pipeline_request = {
method: 'PUT',
path: `/_ingest/pipeline/${pipeline_name}`,
body: {
description: 'An NLP ingest pipeline',
processors: [
{
text_embedding: {
model_id,
field_map: {
body: 'circular_embedding',
},
},
},
],
},
}

try {
const resp = await client.transport.request(create_ingest_pipeline_request)

if (resp && resp.statusCode == 200) {
console.log('Successfully created neural ingest pipeline.')
} else {
console.log(
'Error. Could not create neural ingest pipeline. Returned with response: ',
resp
)
return
}
} catch (e) {
console.log('Error: ', e)
return
}

//Create knn index
await client.indices.create({
index: 'circulars',
body: {
settings: {
'index.knn': true,
default_pipeline: pipeline_name,
},
mappings: {
properties: {
subject: {
type: 'text',
},
submittedHow: {
type: 'text',
},
bibcode: {
type: 'text',
},
createdOn: {
type: 'long',
},
circularId: {
type: 'integer',
},
submitter: {
type: 'text',
},
circular_embedding: {
type: 'knn_vector',
dimension: 384,
method: {
engine: 'lucene',
space_type: 'l2',
name: 'hnsw',
parameters: {},
},
},
body: {
type: 'text',
},
},
},
},
})
}
6 changes: 3 additions & 3 deletions openSearchApi.js
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,10 @@
This file contains API calls to the OpenSearch cluster to register and deploy an ml model to the opensearch cluster.
It also creates a neural ingest pipeline to allow for ingesting of documents into a knn index.
*/
import { Client } from '@opensearch-project/opensearch'
import { search as getSearch } from 'architect-functions-search'

export default async function (opts) {
const client = new Client(opts)
export default async function () {
const client = await getSearch()

//Set cluster settings
const cluster_settings_request = {
Expand Down

0 comments on commit 817c094

Please sign in to comment.