Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: pyspark group by with kwargs #1665

Merged
merged 3 commits into from
Dec 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 24 additions & 14 deletions narwhals/_spark_like/expr.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,24 +233,34 @@ def _min(_input: Column) -> Column:

return self._from_call(_min, "min", returns_scalar=True)

def std(self, ddof: int) -> Self:
def std(self: Self, ddof: int) -> Self:
from functools import partial

import numpy as np # ignore-banned-import

def _std(_input: Column, ddof: int) -> Column: # pragma: no cover
if self._backend_version < (3, 5) or parse_version(np.__version__) > (2, 0):
from pyspark.sql import functions as F # noqa: N812
from narwhals._spark_like.utils import _std

func = partial(
_std,
ddof=ddof,
backend_version=self._backend_version,
np_version=parse_version(np.__version__),
)

return self._from_call(func, "std", returns_scalar=True, ddof=ddof)

if ddof == 1:
return F.stddev_samp(_input)
def var(self: Self, ddof: int) -> Self:
from functools import partial

n_rows = F.count(_input)
return F.stddev_samp(_input) * F.sqrt((n_rows - 1) / (n_rows - ddof))
import numpy as np # ignore-banned-import

from pyspark.pandas.spark.functions import stddev
from narwhals._spark_like.utils import _var

return stddev(_input, ddof=ddof)
func = partial(
_var,
ddof=ddof,
backend_version=self._backend_version,
np_version=parse_version(np.__version__),
)

expr = self._from_call(_std, "std", returns_scalar=True, ddof=ddof)
if ddof != 1:
expr._depth += 1
return expr
return self._from_call(func, "var", returns_scalar=True, ddof=ddof)
49 changes: 37 additions & 12 deletions narwhals/_spark_like/group_by.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,17 @@
from __future__ import annotations

from copy import copy
from functools import partial
from typing import TYPE_CHECKING
from typing import Any
from typing import Callable
from typing import Sequence

from narwhals._expression_parsing import is_simple_aggregation
from narwhals._expression_parsing import parse_into_exprs
from narwhals._spark_like.utils import _std
from narwhals._spark_like.utils import _var
from narwhals.utils import parse_version
from narwhals.utils import remove_prefix

if TYPE_CHECKING:
Expand All @@ -18,10 +22,8 @@
from narwhals._spark_like.typing import IntoSparkLikeExpr
from narwhals.typing import CompliantExpr

POLARS_TO_PYSPARK_AGGREGATIONS = {
"len": "count",
"std": "stddev",
}

POLARS_TO_PYSPARK_AGGREGATIONS = {"len": "count"}


class SparkLikeLazyGroupBy:
Expand Down Expand Up @@ -77,7 +79,18 @@ def _from_native_frame(self, df: SparkLikeLazyFrame) -> SparkLikeLazyFrame:
)


def get_spark_function(function_name: str) -> Column:
def get_spark_function(
function_name: str, backend_version: tuple[int, ...], **kwargs: Any
) -> Column:
if function_name in {"std", "var"}:
import numpy as np # ignore-banned-import

return partial(
_std if function_name == "std" else _var,
ddof=kwargs.get("ddof", 1),
backend_version=backend_version,
np_version=parse_version(np.__version__),
)
from pyspark.sql import functions as F # noqa: N812

return getattr(F, function_name)
Expand Down Expand Up @@ -114,9 +127,12 @@ def agg_pyspark(
function_name = POLARS_TO_PYSPARK_AGGREGATIONS.get(
expr._function_name, expr._function_name
)
for output_name in expr._output_names:
agg_func = get_spark_function(function_name)
simple_aggregations[output_name] = agg_func(keys[0])
agg_func = get_spark_function(
function_name, backend_version=expr._backend_version, **expr._kwargs
)
simple_aggregations.update(
{output_name: agg_func(keys[0]) for output_name in expr._output_names}
)
continue

# e.g. agg(nw.mean('a')) # noqa: ERA001
Expand All @@ -127,11 +143,20 @@ def agg_pyspark(
raise AssertionError(msg)

function_name = remove_prefix(expr._function_name, "col->")
function_name = POLARS_TO_PYSPARK_AGGREGATIONS.get(function_name, function_name)
pyspark_function = POLARS_TO_PYSPARK_AGGREGATIONS.get(
function_name, function_name
)
agg_func = get_spark_function(
pyspark_function, backend_version=expr._backend_version, **expr._kwargs
)

simple_aggregations.update(
{
output_name: agg_func(root_name)
for root_name, output_name in zip(expr._root_names, expr._output_names)
}
)

for root_name, output_name in zip(expr._root_names, expr._output_names):
agg_func = get_spark_function(function_name)
simple_aggregations[output_name] = agg_func(root_name)
agg_columns = [col_.alias(name) for name, col_ in simple_aggregations.items()]
try:
result_simple = grouped.agg(*agg_columns)
Expand Down
40 changes: 40 additions & 0 deletions narwhals/_spark_like/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,3 +118,43 @@ def maybe_evaluate(df: SparkLikeLazyFrame, obj: Any) -> Any:
return column_result.over(Window.partitionBy(F.lit(1)))
return column_result
return obj


def _std(
_input: Column,
ddof: int,
backend_version: tuple[int, ...],
np_version: tuple[int, ...],
) -> Column:
if backend_version < (3, 5) or np_version > (2, 0):
from pyspark.sql import functions as F # noqa: N812

if ddof == 1:
return F.stddev_samp(_input)

n_rows = F.count(_input)
return F.stddev_samp(_input) * F.sqrt((n_rows - 1) / (n_rows - ddof))

from pyspark.pandas.spark.functions import stddev

return stddev(_input, ddof=ddof)


def _var(
_input: Column,
ddof: int,
backend_version: tuple[int, ...],
np_version: tuple[int, ...],
) -> Column:
if backend_version < (3, 5) or np_version > (2, 0):
from pyspark.sql import functions as F # noqa: N812

if ddof == 1:
return F.var_samp(_input)

n_rows = F.count(_input)
return F.var_samp(_input) * (n_rows - 1) / (n_rows - ddof)

from pyspark.pandas.spark.functions import var

return var(_input, ddof=ddof)
1 change: 1 addition & 0 deletions narwhals/typing.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ def __narwhals_namespace__(self) -> Any: ...

class CompliantExpr(Protocol, Generic[CompliantSeriesT_co]):
_implementation: Implementation
_backend_version: tuple[int, ...]
_output_names: list[str] | None
_root_names: list[str] | None
_depth: int
Expand Down
50 changes: 50 additions & 0 deletions tests/spark_like_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -369,6 +369,27 @@ def test_std(pyspark_constructor: Constructor) -> None:
assert_equal_data(result, expected)


# copied from tests/expr_and_series/var_test.py
def test_var(pyspark_constructor: Constructor) -> None:
data = {"a": [1, 3, 2, None], "b": [4, 4, 6, None], "z": [7.0, 8, 9, None]}

expected_results = {
"a_ddof_1": [1.0],
"a_ddof_0": [0.6666666666666666],
"b_ddof_2": [2.666666666666667],
"z_ddof_0": [0.6666666666666666],
}

df = nw.from_native(pyspark_constructor(data))
result = df.select(
nw.col("a").var(ddof=1).alias("a_ddof_1"),
nw.col("a").var(ddof=0).alias("a_ddof_0"),
nw.col("b").var(ddof=2).alias("b_ddof_2"),
nw.col("z").var(ddof=0).alias("z_ddof_0"),
)
assert_equal_data(result, expected_results)


# copied from tests/group_by_test.py
def test_group_by_std(pyspark_constructor: Constructor) -> None:
data = {"a": [1, 1, 2, 2], "b": [5, 4, 3, 2]}
Expand Down Expand Up @@ -441,3 +462,32 @@ def test_group_by_multiple_keys(pyspark_constructor: Constructor) -> None:
"c_max": [7, 1],
}
assert_equal_data(result, expected)


# copied from tests/group_by_test.py
@pytest.mark.parametrize(
("attr", "ddof"),
[
("std", 0),
("var", 0),
("std", 2),
("var", 2),
],
)
def test_group_by_depth_1_std_var(
pyspark_constructor: Constructor,
attr: str,
ddof: int,
) -> None:
data = {"a": [1, 1, 1, 2, 2, 2], "b": [4, 5, 6, 0, 5, 5]}
_pow = 0.5 if attr == "std" else 1
expected = {
"a": [1, 2],
"b": [
(sum((v - 5) ** 2 for v in [4, 5, 6]) / (3 - ddof)) ** _pow,
(sum((v - 10 / 3) ** 2 for v in [0, 5, 5]) / (3 - ddof)) ** _pow,
],
}
expr = getattr(nw.col("b"), attr)(ddof=ddof)
result = nw.from_native(pyspark_constructor(data)).group_by("a").agg(expr).sort("a")
assert_equal_data(result, expected)
Loading