-
Notifications
You must be signed in to change notification settings - Fork 9
/
extract.py
70 lines (58 loc) · 2.23 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
from tqdm import tqdm
import dnnlib
import legacy
import torch
from wrapper import Generator
import numpy as np
def concat_style(s_lst, layers):
result = {layer:list() for layer in layers}
for layer in layers:
for s_ in s_lst:
result[layer].append(s_[layer])
for layer in layers:
result[layer] = torch.cat(result[layer])
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt', type=str, default='pretrained/ffhq.pkl')
parser.add_argument('--dataset_name', type=str, default='')
args = parser.parse_args()
device = torch.device('cuda:0')
ckpt = args.ckpt
dataset_name = args.dataset_name
G = Generator(ckpt, device)
# get intermediate latent of 100000 samples
seed = 2324
w_lst = list()
z = torch.from_numpy(np.random.RandomState(seed).randn(100_000, G.G.z_dim))
for i in tqdm(range(1000)): # 100 * 1000 = 100000 # 1000
start, end = 100 * i, 100 * (i+1)
z_ = z[start:end].to(device)
# apply truncation_psi=.7, first 8 layers
w_ = G.mapping(z_.to(device), truncation_psi=0.7, truncation_cutoff=8)
w_lst.append(w_.cpu())
w_lst = torch.cat(w_lst)
torch.save(w_lst, f'tensor/W{dataset_name}.pt')
# get style of first 2000 sample in W.pt
sample_ws = w_lst[:2000] # 2000
sample_s = G.mapping_stylespace(sample_ws.to(device))
for layer in G.style_layers:
sample_s[layer] = sample_s[layer].cpu()
torch.save(sample_s, f'tensor/S{dataset_name}.pt')
del sample_s
# get std, mean of 100000 style samples
s_lst = list()
for i in tqdm(range(1000)): # 100 * 1000
start, end = 100 * i, 100 * (i+1)
w_ = w_lst[start:end]
s_ = G.mapping_stylespace(w_.to(device))
for layer in G.style_layers:
s_[layer] = s_[layer].cpu()
s_lst.append(s_)
s_lst = concat_style(s_lst, G.style_layers)
s_mean = {layer: torch.mean(s_lst[layer], axis=0) for layer in G.style_layers}
s_std = {layer: torch.std(s_lst[layer], axis=0) for layer in G.style_layers}
torch.save(s_mean, f'tensor/S_mean{dataset_name}.pt')
torch.save(s_std, f'tensor/S_std{dataset_name}.pt')
print("Done.")