-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconfigs.py
86 lines (75 loc) · 2.55 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
class GENERATOR_CONFIGS:
"""StyleGAN2-ada generator configuration
"""
def __init__(self, resolution=1024):
channel_base = 32768 if resolution >= 1024 else 16384
self.G_kwargs = {
'class_name': 'training.networks.Generator',
'z_dim': 512,
'w_dim': 512,
'mapping_kwargs': {'num_layers': 8},
'synthesis_kwargs': {
'channel_base': channel_base,
'channel_max': 512,
'num_fp16_res': 4,
'conv_clamp': 256
}
}
self.common_kwargs = {'c_dim': 0, 'img_resolution': resolution, 'img_channels': 3}
self.w_idx_lst = [
0,1, # 4
1,2,3, # 8
3,4,5, # 16
5,6,7, # 32
7,8,9, # 64
9,10,11, # 128
11,12,13, # 256
13,14,15, # 512
15,16,17, # 1024
]
cutoff_idx = int(np.log2(1024/resolution) * (-3))
if resolution < 1024:
self.w_idx_lst = self.w_idx_lst[:cutoff_idx]
class PATH_CONFIGS:
"""Paths configuration
"""
def __init__(self):
self.e4e = 'pretrained/e4e_ffhq_encode.pt'
self.stylegan2_ada_ffhq = 'pretrained/ffhq.pkl'
self.ir_se50 = 'pretrained/model_ir_se50.pth'
self.dlib = 'pretrained/shape_predictor_68_face_landmarks.dat'
class PTI_HPARAMS:
"""Pivot-tuning-inversion related hyper-parameters
"""
def __init__(self):
# Architectures
self.lpips_type = 'alex'
self.first_inv_type = 'w+'
self.optim_type = 'adam'
# Locality regularization
self.latent_ball_num_of_samples = 1
self.locality_regularization_interval = 1
self.use_locality_regularization = False
self.regulizer_l2_lambda = 0.1
self.regulizer_lpips_lambda = 0.1
self.regulizer_alpha = 30
## Loss
self.pt_l2_lambda = 1
self.pt_lpips_lambda = 1
## Steps
self.LPIPS_value_threshold = 0.06
self.max_pti_steps = 350
self.first_inv_steps = 450
self.max_images_to_invert = 30
## Optimization
self.pti_learning_rate = 3e-4
self.first_inv_lr = 5e-3
self.train_batch_size = 1
class PTI_GLOBAL_CFGS:
def __init__(self):
self.training_step = 1
self.imgage_rec_result_log_snapshot = 100
self.pivotal_training_steps = 0
self.model_snapshot_interval = 400
self.run_name = ''