- create gradio space
- put this into your directory for
app.py
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
def generate_prompt(example: dict) -> str:
"""Generates a standardized message to prompt the model with an instruction, optional input and a
'response' field."""
if example["input"]:
return (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
f"### Instruction:\n{example['instruction']}\n\n### Input:\n{example['input']}\n\n### Response:"
)
return (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
f"### Instruction:\n{example['instruction']}\n\n### Response:"
)
tokenizer = AutoTokenizer.from_pretrained("mehrdad-es/legalLLM-hf")
model = AutoModelForCausalLM.from_pretrained("mehrdad-es/legalLLM-hf", torch_dtype=torch.float16)
model = model.to('cuda:0')
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [30, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def predict(message, history):
prompt,userInput = message.split('!!')
message=generate_prompt({"instruction": prompt, "input": userInput})
history_transformer_format = history + [[message, ""]]
stop = StopOnTokens()
messages = "".join(["".join(["\n<USER>:"+item[0], "\n<ASSISTANT>:"+item[1]]) #curr_system_message +
for item in history_transformer_format])
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=400,
do_sample=True,
top_p=0.85,
top_k=500,
temperature=0.1,
num_beams=1,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != '<':
partial_message += new_token
yield partial_message
gr.ChatInterface(predict).queue().launch()
- Put this in
requirements.txt
gradio
torch
transformers
- You are ready to build your space with a10g gpu with 46GB ram. Note this setup is recommended. After that you have a chatbot to talk to. Please use {instruction} !! {text} to talk to the chatbot.
- Go to
data/alpaca/BillSum
and download the datasets as so:
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="lighteval/legal-summarization", filename="train.jsonl", repo_type="dataset")
hf_hub_download(repo_id="lighteval/legal-summarization", filename="test.jsonl", repo_type="dataset")
- run
python create_pkl.py
- Return to main directory
cd ../../..
- Run the following commands in the terminal, assuming you have created a venv and enabled it. Please change the
devices
infinetune/lora.py
according to your setup. I used 8X Nvidia L4's which ran 6400 iterations in ~7 hours with max GPU utilization of 22GB.pip install -r requirements-all.txt python scripts/download.py --repo_id stabilityai/stablelm-tuned-alpha-3b python scripts/convert_hf_checkpoint.py --checkpoint_dir checkpoints/stabilityai/stablelm-tuned-alpha-3b python scripts/prepare_alpaca.py \ --destination_path data/alpaca \ --checkpoint_dir checkpoints/stabilityai/stablelm-tuned-alpha-3b python finetune/lora.py \ --precision bf16-true \ --data_dir data/alpaca \ --checkpoint_dir checkpoints/stabilityai/stablelm-tuned-alpha-3b \ --out_dir out/lora/alpaca
- Refer to
tutorials/inference.md
for how to play with the new finetuned model. In order to combine lora weights with orginal model to create legalLLM refer totutorials/finetune_lora.py
. - In order to upload model to Hugging Face use the following code (assuming you have logined with
huggingface-cli login
) to upload entire folder to newly created empty model directory in Hugging Facefrom huggingface_hub import HfApi api = HfApi() api.upload_folder( folder_path="./path/to/model_directory/", repo_id="hugging_face_username/model_repo_name", repo_type="model" )