Skip to content

Commit

Permalink
chianlit example (#1238)
Browse files Browse the repository at this point in the history
  • Loading branch information
sfxworks authored Nov 2, 2023
1 parent 035fea6 commit 23c7fbf
Show file tree
Hide file tree
Showing 5 changed files with 146 additions and 0 deletions.
16 changes: 16 additions & 0 deletions examples/chainlit/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# Use an official Python runtime as a parent image
FROM harbor.home.sfxworks.net/docker/library/python:3.9-slim

# Set the working directory in the container
WORKDIR /app

# Copy the current directory contents into the container at /app
COPY requirements.txt /app

# Install any needed packages specified in requirements.txt
RUN pip install -r requirements.txt

COPY . /app

# Run app.py when the container launches
CMD ["chainlit", "run", "-h", "--host", "0.0.0.0", "main.py" ]
25 changes: 25 additions & 0 deletions examples/chainlit/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# LocalAI Demonstration with Embeddings and Chainlit

This demonstration shows you how to use embeddings with existing data in `LocalAI`, and how to integrate it with Chainlit for an interactive querying experience. We are using the `llama_index` library to facilitate the embedding and querying processes, and `chainlit` to provide an interactive interface. The `Weaviate` client is used as the embedding source.

## Prerequisites

Before proceeding, make sure you have the following installed:
- Weaviate client
- LocalAI and its dependencies
- Chainlit and its dependencies

## Getting Started

1. Clone this repository:
2. Navigate to the project directory:
3. Run the example: `chainlit run main.py`

# Highlight on `llama_index` and `chainlit`

`llama_index` is the key library that facilitates the process of embedding and querying data in LocalAI. It provides a seamless interface to integrate various components, such as `WeaviateVectorStore`, `LocalAI`, `ServiceContext`, and more, for a smooth querying experience.

`chainlit` is used to provide an interactive interface for users to query the data and see the results in real-time. It integrates with llama_index to handle the querying process and display the results to the user.

In this example, `llama_index` is used to set up the `VectorStoreIndex` and `QueryEngine`, and `chainlit` is used to handle the user interactions with `LocalAI` and display the results.

16 changes: 16 additions & 0 deletions examples/chainlit/config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
localAI:
temperature: 0
modelName: gpt-3.5-turbo
apiBase: http://local-ai.default
apiKey: stub
streaming: True
weviate:
url: http://weviate.local
index: AIChroma
query:
mode: hybrid
topK: 1
alpha: 0.0
chunkSize: 1024
embedding:
model: BAAI/bge-small-en-v1.5
82 changes: 82 additions & 0 deletions examples/chainlit/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
import os

import weaviate
from llama_index.storage.storage_context import StorageContext
from llama_index.vector_stores import WeaviateVectorStore

from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine
from llama_index.callbacks.base import CallbackManager
from llama_index import (
LLMPredictor,
ServiceContext,
StorageContext,
VectorStoreIndex,
)
import chainlit as cl

from llama_index.llms import LocalAI
from llama_index.embeddings import HuggingFaceEmbedding
import yaml

# Load the configuration file
with open("config.yaml", "r") as ymlfile:
cfg = yaml.safe_load(ymlfile)

# Get the values from the configuration file or set the default values
temperature = cfg['localAI'].get('temperature', 0)
model_name = cfg['localAI'].get('modelName', "gpt-3.5-turbo")
api_base = cfg['localAI'].get('apiBase', "http://local-ai.default")
api_key = cfg['localAI'].get('apiKey', "stub")
streaming = cfg['localAI'].get('streaming', True)
weaviate_url = cfg['weviate'].get('url', "http://weviate.default")
index_name = cfg['weviate'].get('index', "AIChroma")
query_mode = cfg['query'].get('mode', "hybrid")
topK = cfg['query'].get('topK', 1)
alpha = cfg['query'].get('alpha', 0.0)
embed_model_name = cfg['embedding'].get('model', "BAAI/bge-small-en-v1.5")
chunk_size = cfg['query'].get('chunkSize', 1024)


embed_model = HuggingFaceEmbedding(model_name=embed_model_name)


llm = LocalAI(temperature=temperature, model_name=model_name, api_base=api_base, api_key=api_key, streaming=streaming)
llm.globally_use_chat_completions = True;
client = weaviate.Client(weaviate_url)
vector_store = WeaviateVectorStore(weaviate_client=client, index_name=index_name)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

@cl.on_chat_start
async def factory():

llm_predictor = LLMPredictor(
llm=llm
)

service_context = ServiceContext.from_defaults(embed_model=embed_model, callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]), llm_predictor=llm_predictor, chunk_size=chunk_size)

index = VectorStoreIndex.from_vector_store(
vector_store,
storage_context=storage_context,
service_context=service_context
)

query_engine = index.as_query_engine(vector_store_query_mode=query_mode, similarity_top_k=topK, alpha=alpha, streaming=True)

cl.user_session.set("query_engine", query_engine)


@cl.on_message
async def main(message: cl.Message):
query_engine = cl.user_session.get("query_engine")
response = await cl.make_async(query_engine.query)(message.content)

response_message = cl.Message(content="")

for token in response.response_gen:
await response_message.stream_token(token=token)

if response.response_txt:
response_message.content = response.response_txt

await response_message.send()
7 changes: 7 additions & 0 deletions examples/chainlit/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
llama_hub==0.0.41
llama_index==0.8.55
Requests==2.31.0
weaviate_client==3.25.1
transformers
torch
chainlit

0 comments on commit 23c7fbf

Please sign in to comment.