Skip to content

Commit

Permalink
Version 3 features 🛠️
Browse files Browse the repository at this point in the history
  • Loading branch information
muditbhargava66 committed Apr 25, 2024
1 parent f568b27 commit 0cc4599
Show file tree
Hide file tree
Showing 2 changed files with 199 additions and 0 deletions.
98 changes: 98 additions & 0 deletions examples/vit_experiments/benchmark_visualizations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
"""
Visualizing the Behavior of DropGrad with Various Optimizers on Optimization Benchmarks
"""

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import rosen
from dropgrad import DropGrad
import torch
from torch.optim import SGD, Adam, AdamW, Adagrad, Adadelta

def rastrigin(x):
A = 10
n = len(x)
return A * n + sum(x**2 - A * np.cos(2 * np.pi * x))

def ackley(x):
a = 20
b = 0.2
c = 2 * np.pi
d = len(x)
sum_sq_term = -a * np.exp(-b * np.sqrt(np.sum(x**2) / d))
cos_term = -np.exp(np.sum(np.cos(c * x)) / d)
return a + np.exp(1) + sum_sq_term + cos_term

def apply_dropgrad(optimizer, drop_rate):
"""
Apply DropGrad to the optimizer if drop_rate is greater than 0.
"""
if drop_rate > 0:
return DropGrad(optimizer, drop_rate=drop_rate)
return optimizer

def optimize(optimizer, x, benchmark_func, num_iterations):
"""
Run the optimizer on the benchmark function for a given number of iterations.
"""
trajectory = [x.detach().numpy().copy()]

for _ in range(num_iterations):
optimizer.zero_grad()
y = benchmark_func(x.detach().numpy())
y_tensor = torch.tensor(y, requires_grad=True)
y_tensor.backward()
optimizer.step()
trajectory.append(x.detach().numpy().copy())

return trajectory

def visualize_benchmark(benchmark_func, optimizers, num_iterations, drop_rates):
"""
Visualize the optimization trajectories for different optimizers and drop rates.
"""
num_optimizers = len(optimizers)
num_drop_rates = len(drop_rates)

fig, axs = plt.subplots(num_optimizers, num_drop_rates, figsize=(12, 8), sharex=True, sharey=True)

if num_optimizers == 1 and num_drop_rates == 1:
axs = [[axs]]
elif num_optimizers == 1:
axs = [axs]
elif num_drop_rates == 1:
axs = [[ax] for ax in axs]

for i, (optimizer_name, base_optimizer) in enumerate(optimizers.items()):
for j, drop_rate in enumerate(drop_rates):
x = torch.randn(2, requires_grad=True)
optimizer = apply_dropgrad(base_optimizer, drop_rate)
trajectory = optimize(optimizer, x, benchmark_func, num_iterations)

x_values = [point[0] for point in trajectory]
y_values = [point[1] for point in trajectory]

axs[i][j].plot(x_values, y_values, marker='o', markersize=2, linestyle='-', linewidth=0.5)
axs[i][j].set_title(f"{optimizer_name} (Drop Rate: {drop_rate})")

fig.suptitle(f"Optimization Trajectories on {benchmark_func.__name__}", fontsize=16)
plt.tight_layout()
plt.show()

def main():
num_iterations = 1000
optimizers = {
"SGD": SGD([torch.randn(2, requires_grad=True)], lr=0.01),
"Adam": Adam([torch.randn(2, requires_grad=True)], lr=0.01),
"AdamW": AdamW([torch.randn(2, requires_grad=True)], lr=0.01),
"Adagrad": Adagrad([torch.randn(2, requires_grad=True)], lr=0.01),
"Adadelta": Adadelta([torch.randn(2, requires_grad=True)], lr=0.01),
}
drop_rates = [0.0, 0.1, 0.2]
benchmarks = [rosen, rastrigin, ackley]

for benchmark_func in benchmarks:
visualize_benchmark(benchmark_func, optimizers, num_iterations, drop_rates)

if __name__ == "__main__":
main()
101 changes: 101 additions & 0 deletions examples/vit_experiments/mathematical_analysis.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
"""
Mathematical Analysis of DropGrad's Effect on Optimizers
"""

import numpy as np
import matplotlib.pyplot as plt

def sgd_update(params, grads, lr):
"""
Stochastic Gradient Descent (SGD) update rule.
"""
return params - lr * grads

def adam_update(params, grads, m, v, t, lr, beta1, beta2, eps):
"""
Adam update rule.
"""
m = beta1 * m + (1 - beta1) * grads
v = beta2 * v + (1 - beta2) * (grads ** 2)
m_hat = m / (1 - beta1 ** t)
v_hat = v / (1 - beta2 ** t)
return params - lr * m_hat / (np.sqrt(v_hat) + eps), m, v

def lion_update(params, grads, m, t, lr, beta1, beta2):
"""
Lion update rule.
"""
m = beta1 * m + (1 - beta1) * grads
m_hat = m / (1 - beta1 ** t)
update = lr * m_hat / (np.abs(m_hat) + beta2)
return params - update, m

def dropgrad_update(params, grads, drop_rate):
"""
DropGrad modification of the gradient update.
"""
mask = np.random.binomial(1, 1 - drop_rate, size=grads.shape)
return params - (grads * mask) / (1 - drop_rate)

def analyze_optimizer(optimizer, num_iterations, drop_rate=0.0):
"""
Analyze the effect of DropGrad on an optimizer.
"""
params = np.zeros(10)
m = np.zeros_like(params)
v = np.zeros_like(params)
lr = 0.01
beta1 = 0.9
beta2 = 0.999
eps = 1e-8

trajectories = []
for _ in range(num_iterations):
grads = np.random.randn(*params.shape)
if optimizer == "sgd":
params = sgd_update(params, grads, lr)
elif optimizer == "adam":
params, m, v = adam_update(params, grads, m, v, _ + 1, lr, beta1, beta2, eps)
elif optimizer == "lion":
params, m = lion_update(params, grads, m, _ + 1, lr, beta1, beta2)

if drop_rate > 0:
params = dropgrad_update(params, grads, drop_rate)

trajectories.append(params.copy())

return np.array(trajectories)

def visualize_trajectories(optimizer, num_iterations, drop_rates):
"""
Visualize the optimization trajectories with different drop rates.
"""
trajectories = []
for drop_rate in drop_rates:
trajectories.append(analyze_optimizer(optimizer, num_iterations, drop_rate))

plt.figure(figsize=(8, 6))
for i, drop_rate in enumerate(drop_rates):
plt.plot(trajectories[i][:, 0], trajectories[i][:, 1], label=f"Drop Rate: {drop_rate}")
plt.xlabel("Parameter 1")
plt.ylabel("Parameter 2")
plt.title(f"Optimization Trajectories ({optimizer.upper()})")
plt.legend()
plt.tight_layout()
plt.show()

def main():
num_iterations = 1000
drop_rates = [0.0, 0.1, 0.2, 0.3]

# Analyze SGD optimizer
visualize_trajectories("sgd", num_iterations, drop_rates)

# Analyze Adam optimizer
visualize_trajectories("adam", num_iterations, drop_rates)

# Analyze Lion optimizer
visualize_trajectories("lion", num_iterations, drop_rates)

if __name__ == "__main__":
main()

0 comments on commit 0cc4599

Please sign in to comment.