-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
503 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# fitting.git | ||
Some example fits | ||
Work with this by installing [docker](https://www.docker.com/) and pip and then running | ||
|
||
~~~ | ||
pip install jupyter-repo2docker | ||
jupyter-repo2docker --editable . | ||
~~~ | ||
|
||
Change `tree` to `lab` in the URL for JupyterLab. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
FROM bnlxray/main:172e41f3bd7d |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import lmfit\n", | ||
"import numpy as np\n", | ||
"import copy\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from fitting_functions import paramagnon\n", | ||
"from matplotlib.ticker import AutoMinorLocator\n", | ||
"\n", | ||
"%matplotlib widget" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"E_, I_ = np.loadtxt('LSCO_30_LH_grazout.txt', unpack=True, skiprows=1)\n", | ||
"E_ *= -1\n", | ||
"choose = np.logical_and(E_>-.5, E_<2.5)\n", | ||
"E = E_[choose]\n", | ||
"I = I_[choose]\n", | ||
"dd_onset = 1." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model = (lmfit.models.GaussianModel(prefix='el_') + lmfit.Model(paramagnon, prefix='mag_')\n", | ||
" + lmfit.models.PseudoVoigtModel(prefix='dd0_')\n", | ||
" + lmfit.models.PseudoVoigtModel(prefix='dd1_')\n", | ||
" + lmfit.models.PseudoVoigtModel(prefix='dd2_')\n", | ||
" + lmfit.models.ConstantModel())\n", | ||
"params = model.make_params()\n", | ||
"\n", | ||
"fwhm = 2*np.sqrt(2*np.log(2))\n", | ||
"res = 0.13/fwhm\n", | ||
" \n", | ||
"params['el_center'].set(value=0, vary=False)\n", | ||
"params['el_amplitude'].set(value=100, min=0)\n", | ||
"params['el_sigma'].set(value=res, vary=False)\n", | ||
"\n", | ||
"params['mag_center'].set(value=.35)\n", | ||
"params['mag_sigma'].set(value=.05, min=0)\n", | ||
"params['mag_amplitude'].set(value=20, min=0)\n", | ||
"\n", | ||
"params['mag_res'].set(value=res, vary=False)\n", | ||
"params['mag_kBT'].set(value=8.617e-5*25, vary=False)\n", | ||
"\n", | ||
"params['dd0_center'].set(value=1.6, min=1, max=3)\n", | ||
"params['dd0_sigma'].set(value=0.1, min=0)\n", | ||
"params['dd0_amplitude'].set(value=300)\n", | ||
"\n", | ||
"params['dd1_center'].set(value=1.8, min=1, max=3)\n", | ||
"params['dd1_sigma'].set(value=0.1, min=0)\n", | ||
"params['dd1_amplitude'].set(value=300)\n", | ||
"\n", | ||
"params['dd2_center'].set(value=2, min=1, max=3)\n", | ||
"params['dd2_sigma'].set(value=0.1, min=0)\n", | ||
"params['dd2_amplitude'].set(value=300)\n", | ||
"\n", | ||
"params_dd = copy.deepcopy(params)\n", | ||
"\n", | ||
"for key in params_dd.keys():\n", | ||
" if key[:2] in ['el', 'ma']:\n", | ||
" params_dd[key].set(vary=False)\n", | ||
" else:\n", | ||
" params_dd[key].set(vary=True)\n", | ||
"\n", | ||
"# Fit dds and force leading edge accuracy by artificial weighting\n", | ||
"dd_region = np.logical_or(E<-.3, E>dd_onset)\n", | ||
"weights = .1 + np.exp(-1*((E-1.1)/.3)**2)\n", | ||
"params_dd['c'].set(value=I.min(), vary=False) \n", | ||
"result_dds = model.fit(I[dd_region], x=E[dd_region], params=params_dd,\n", | ||
" weights=weights[dd_region])\n", | ||
"\n", | ||
"#fig, ax = plt.subplots()\n", | ||
"#result_dds.plot_fit(ax=ax, show_init=True)\n", | ||
"\n", | ||
"# assign and fix values for dds \n", | ||
"for key in params.keys():\n", | ||
" if key[:2] == 'dd':\n", | ||
" params[key].set(value=result_dds.params[key].value, vary=False)\n", | ||
"\n", | ||
"params['c'].set(value=I.min(), vary=False) \n", | ||
"result = model.fit(I, x=E, params=params)\n", | ||
"\n", | ||
"# fig, ax = plt.subplots()\n", | ||
"# result.plot_fit(ax=ax, show_init=True)\n", | ||
"# \n", | ||
"# print(result.fit_report())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "6f43ec06c63d4193aa1ccdeaf15bd7a1", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[Model]]\n", | ||
" (((((Model(gaussian, prefix='el_') + Model(paramagnon, prefix='mag_')) + Model(pvoigt, prefix='dd0_')) + Model(pvoigt, prefix='dd1_')) + Model(pvoigt, prefix='dd2_')) + Model(constant))\n", | ||
"[[Fit Statistics]]\n", | ||
" # fitting method = leastsq\n", | ||
" # function evals = 63\n", | ||
" # data points = 98\n", | ||
" # variables = 4\n", | ||
" chi-square = 10179.8497\n", | ||
" reduced chi-square = 108.296273\n", | ||
" Akaike info crit = 463.033409\n", | ||
" Bayesian info crit = 473.373278\n", | ||
"[[Variables]]\n", | ||
" el_amplitude: 8.72381742 +/- 0.86393752 (9.90%) (init = 100)\n", | ||
" el_center: 0 (fixed)\n", | ||
" el_sigma: 0.05520592 (fixed)\n", | ||
" mag_amplitude: 33.4456677 +/- 0.94889600 (2.84%) (init = 20)\n", | ||
" mag_center: 0.26702044 +/- 0.00309973 (1.16%) (init = 0.35)\n", | ||
" mag_sigma: 0.22941715 +/- 0.01224635 (5.34%) (init = 0.05)\n", | ||
" mag_res: 0.05520592 (fixed)\n", | ||
" mag_kBT: 0.00215425 (fixed)\n", | ||
" dd0_amplitude: 682.9913 (fixed)\n", | ||
" dd0_center: 1.80157 (fixed)\n", | ||
" dd0_sigma: 0.2914458 (fixed)\n", | ||
" dd0_fraction: 1.772421e-11 (fixed)\n", | ||
" dd1_amplitude: 227.6857 (fixed)\n", | ||
" dd1_center: 1.717436 (fixed)\n", | ||
" dd1_sigma: 0.1024631 (fixed)\n", | ||
" dd1_fraction: 3.824163e-13 (fixed)\n", | ||
" dd2_amplitude: 568.9392 (fixed)\n", | ||
" dd2_center: 2.099117 (fixed)\n", | ||
" dd2_sigma: 0.2531614 (fixed)\n", | ||
" dd2_fraction: 0.9321681 (fixed)\n", | ||
" c: 7.519076 (fixed)\n", | ||
" el_fwhm: 0.13000000 +/- 0.00000000 (0.00%) == '2.3548200*el_sigma'\n", | ||
" el_height: 63.0421515 +/- 6.24319350 (9.90%) == '0.3989423*el_amplitude/max(2.220446049250313e-16, el_sigma)'\n", | ||
" dd0_fwhm: 0.2 (fixed)\n", | ||
" dd0_height: 1182.043 (fixed)\n", | ||
" dd1_fwhm: 0.2 (fixed)\n", | ||
" dd1_height: 1182.043 (fixed)\n", | ||
" dd2_fwhm: 0.2 (fixed)\n", | ||
" dd2_height: 1182.043 (fixed)\n", | ||
"[[Correlations]] (unreported correlations are < 0.100)\n", | ||
" C(mag_amplitude, mag_sigma) = 0.830\n", | ||
" C(mag_center, mag_sigma) = 0.443\n", | ||
" C(mag_amplitude, mag_center) = 0.343\n", | ||
" C(el_amplitude, mag_amplitude) = -0.289\n", | ||
" C(el_amplitude, mag_sigma) = -0.272\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"16336" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"result = model.fit(I, x=E, params=params)\n", | ||
"\n", | ||
"fig, ax = plt.subplots()\n", | ||
"\n", | ||
"x_fit = np.linspace(E.min(), E.max(), 1000)\n", | ||
"\n", | ||
"components = result.eval_components(x=x_fit)\n", | ||
"constant = components.pop('constant')\n", | ||
"dd0 = components.pop('dd0_')\n", | ||
"dd1 = components.pop('dd1_')\n", | ||
"dd2 = components.pop('dd2_')\n", | ||
"\n", | ||
"BG = constant + dd0 + dd1 + dd2\n", | ||
"\n", | ||
"ax.plot(x_fit, BG, 'k:', label='BG')\n", | ||
"for model_name, model_value in components.items():\n", | ||
" ax.plot(x_fit, model_value + BG, '-', label=model_name.strip('_'))\n", | ||
"\n", | ||
"y_fit = result.eval(**result.best_values, x=x_fit)\n", | ||
"ax.plot(x_fit, y_fit, color=[0.5]*3, label='fit', lw=3, alpha=0.5)\n", | ||
"ax.plot(E, I, 'k.', label='data')\n", | ||
"\n", | ||
"ax.set_xlabel('Energy loss (eV)')\n", | ||
"ax.set_ylabel('I')\n", | ||
"ax.legend()\n", | ||
"ax.axis([-.4, dd_onset, 0, 400])\n", | ||
"\n", | ||
"ax.xaxis.set_minor_locator(AutoMinorLocator(2))\n", | ||
"ax.yaxis.set_minor_locator(AutoMinorLocator(2))\n", | ||
"\n", | ||
"print(result.fit_report())\n", | ||
"\n", | ||
"result.dump(open('fit_info.json','w'))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ci = result.ci_report()\n", | ||
"with open('ci_info.text','w') as f:\n", | ||
" f.write(ci)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
from .lineshapes import (paramagnon, magnon, bose, make_gaussian_kernal, | ||
convolve, zero2Linear, zero2Quad, antisymlorz, | ||
plane2D, plane3D, plane3Dcentered, lorentzianSq2D, | ||
lorentzianSq2DRot, lorentzianSq3D, error) |
Oops, something went wrong.