Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Only torch 2.4.0 compatible #1505

Merged
merged 2 commits into from
Aug 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 0 additions & 8 deletions .github/workflows/docker.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,6 @@ jobs:
strategy:
matrix:
include:
- name: "2.3.1_cu121"
base_image: mosaicml/pytorch:2.3.1_cu121-python3.11-ubuntu20.04
dep_groups: "[all]"
te_commit: b5a7c9f
- name: "2.3.1_cu121_aws"
base_image: mosaicml/pytorch:2.3.1_cu121-python3.11-ubuntu20.04-aws
dep_groups: "[all]"
te_commit: b5a7c9f
- name: "2.4.0_cu124"
base_image: mosaicml/pytorch:2.4.0_cu124-python3.11-ubuntu20.04
dep_groups: "[all]"
Expand Down
4 changes: 2 additions & 2 deletions .github/workflows/pr-cpu.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,9 @@ jobs:
strategy:
matrix:
include:
- name: "cpu-2.3.1"
- name: "cpu-2.4.0"
pip_deps: "[all-cpu]"
container: mosaicml/pytorch:2.3.1_cpu-python3.11-ubuntu20.04
container: mosaicml/pytorch:2.4.0_cpu-python3.11-ubuntu20.04
markers: "not gpu"
pytest_command: "coverage run -m pytest"
steps:
Expand Down
12 changes: 6 additions & 6 deletions .github/workflows/pr-gpu.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ jobs:
fail-fast: false
matrix:
include:
- name: "gpu-2.3.1-1"
container: mosaicml/llm-foundry:2.3.1_cu121-latest
- name: "gpu-2.4.0-1"
container: mosaicml/llm-foundry:2.4.0_cu124-latest
markers: "gpu"
pip_deps: "[all]"
pytest_command: "coverage run -m pytest"
Expand Down Expand Up @@ -51,8 +51,8 @@ jobs:
fail-fast: false
matrix:
include:
- name: "gpu-2.3.1-2"
container: mosaicml/llm-foundry:2.3.1_cu121-latest
- name: "gpu-2.4.0-2"
container: mosaicml/llm-foundry:2.4.0_cu124-latest
markers: "gpu"
pip_deps: "[all]"
pytest_command: "coverage run -m pytest"
Expand Down Expand Up @@ -80,8 +80,8 @@ jobs:
fail-fast: false
matrix:
include:
- name: "gpu-2.3.1-4"
container: mosaicml/llm-foundry:2.3.1_cu121-latest
- name: "gpu-2.4.0-4"
container: mosaicml/llm-foundry:2.4.0_cu124-latest
markers: "gpu"
pip_deps: "[all]"
pytest_command: "coverage run -m pytest"
Expand Down
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -107,30 +107,30 @@ Something missing? Contribute with a PR!


# Hardware and Software Requirements
This codebase has been tested with PyTorch 2.2 with NVIDIA A100s and H100s.
This codebase has been tested with PyTorch 2.4 with NVIDIA A100s and H100s.
This codebase may also work on systems with other devices, such as consumer NVIDIA cards and AMD cards, but we are not actively testing these systems.
If you have success/failure using LLM Foundry on other systems, please let us know in a Github issue and we will update the support matrix!

| Device | Torch Version | Cuda Version | Status |
| -------------- | ------------- | ------------ | ---------------------------- |
| A100-40GB/80GB | 2.3.1 | 12.1 | :white_check_mark: Supported |
| H100-80GB | 2.3.1 | 12.1 | :white_check_mark: Supported |
| A100-40GB/80GB | 2.4.0 | 12.4 | :white_check_mark: Supported |
| H100-80GB | 2.4.0 | 12.4 | :white_check_mark: Supported |

## MosaicML Docker Images
We highly recommend using our prebuilt Docker images. You can find them here: https://hub.docker.com/orgs/mosaicml/repositories.

The `mosaicml/pytorch` images are pinned to specific PyTorch and CUDA versions, and are stable and rarely updated.

The `mosaicml/llm-foundry` images are built with new tags upon every commit to the `main` branch.
You can select a specific commit hash such as `mosaicml/llm-foundry:2.3.1_cu121-36ab1ba` or take the latest one using `mosaicml/llm-foundry:2.3.1_cu121-latest`.
You can select a specific commit hash such as `mosaicml/llm-foundry:2.4.0_cu124-36ab1ba` or take the latest one using `mosaicml/llm-foundry:2.4.0_cu124-latest`.

**Please Note:** The `mosaicml/llm-foundry` images do not come with the `llm-foundry` package preinstalled, just the dependencies. You will still need to `pip install llm-foundry` either from PyPi or from source.

| Docker Image | Torch Version | Cuda Version | LLM Foundry dependencies installed? |
| ------------------------------------------------------ | ------------- | ----------------- | ----------------------------------- |
| `mosaicml/pytorch:2.3.1_cu121-python3.11-ubuntu20.04` | 2.3.1 | 12.1 (Infiniband) | No |
| `mosaicml/llm-foundry:2.3.1_cu121-latest` | 2.3.1 | 12.1 (Infiniband) | Yes |
| `mosaicml/llm-foundry:2.3.1_cu121_aws-latest` | 2.3.1 | 12.1 (EFA) | Yes |
| `mosaicml/pytorch:2.4.0_cu124-python3.11-ubuntu20.04` | 2.4.0 | 12.4 (Infiniband) | No |
| `mosaicml/llm-foundry:2.4.0_cu124-latest` | 2.4.0 | 12.4 (Infiniband) | Yes |
| `mosaicml/llm-foundry:2.4.0_cu124_aws-latest` | 2.4.0 | 12.4 (EFA) | Yes |


# Installation
Expand Down
1 change: 0 additions & 1 deletion llmfoundry/models/layers/ffn.py
Original file line number Diff line number Diff line change
Expand Up @@ -397,7 +397,6 @@ def attach_ffn_mb_args(
"""
ffn.experts.mlp.hidden_size = args.ffn_hidden_size
ffn.experts.mlp.expert_parallel_group = expert_parallel_group
ffn.experts.mlp.weight_parallel_group = args.weight_parallel_group


def get_fsdp_submesh_2d(device_mesh: DeviceMesh):
Expand Down
10 changes: 0 additions & 10 deletions llmfoundry/models/utils/mpt_param_count.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,13 +62,6 @@ def megablocks_n_total_params(mpt_model) -> int: # type: ignore

moe_world_size = mpt_model.config.ffn_config.get('moe_world_size')

if mpt_model.config.ffn_config.get('moe_weight_parallelism', False):
# If MegaBlocks shards experts, the total sharding world size
# must be increased by the degree to which MegaBlocks shards the
# experts.
mb_args = mpt_model.model.transformer.mb_args
moe_world_size *= mb_args.weight_parallel_group.size()

n_total_params = 0
for module in mpt_model.modules():
if isinstance(
Expand Down Expand Up @@ -109,9 +102,6 @@ def megablocks_n_active_params(mpt_model) -> int: # type: ignore
moe_world_size = mpt_model.config.ffn_config.get('moe_world_size')

local_experts = moe_num_experts / moe_world_size # if local_experts is < 1, then the expert is sharded
if mpt_model.config.ffn_config.get('moe_weight_parallelism', False):
mb_args = mpt_model.model.transformer.mb_args
local_experts /= mb_args.weight_parallel_group.size()

moe_top_k = mpt_model.config.ffn_config.get('moe_top_k', 1)
n_active_params = 0
Expand Down
54 changes: 11 additions & 43 deletions llmfoundry/models/utils/param_init_fns.py
Original file line number Diff line number Diff line change
Expand Up @@ -484,19 +484,12 @@ def _megablocks_sparse_mlp_generic_param_init_fn_(
div_is_residual (float): The value by which parameter initialization is divided
if init_div_is_residual flag is enabled.
"""
expert_process_group_size, rank, weight_parallel_group_size, weight_parallel_group_rank = 1, 0, 1, 0
expert_process_group_size, rank = 1, 0
if module.expert_parallel_group is not None:
expert_process_group_size = int(
module.expert_parallel_group.size(),
) # type: ignore
rank = int(module.expert_parallel_group.rank()) # type: ignore
if module.weight_parallel_group is not None:
weight_parallel_group_size = int(
module.weight_parallel_group.size(),
) # type: ignore
weight_parallel_group_rank = int(
module.weight_parallel_group.rank(),
) # type: ignore

hidden_size = int(module.hidden_size) # type: ignore

Expand All @@ -505,35 +498,29 @@ def _megablocks_sparse_mlp_generic_param_init_fn_(
if isinstance(w1, DTensor):
w1 = w1._local_tensor
w1_size = list(w1.shape) # type: ignore
w1_size[
0] = w1_size[0] * expert_process_group_size * weight_parallel_group_size
w1_size[0] = w1_size[0] * expert_process_group_size

n_exp = w1_size[0] // hidden_size
_fused = (0, [(n + 1) * hidden_size for n in range(n_exp - 1)])

_w1 = w1.new_empty(w1_size) # type: ignore
fused_param_init_helper(_w1, init_fn_, _fused)
_w1_local = _w1.chunk(expert_process_group_size, dim=0)[rank]
_w1_local_slice = _w1_local.chunk(weight_parallel_group_size,
dim=0)[weight_parallel_group_rank]
with torch.no_grad():
w1.copy_(_w1_local_slice) # type: ignore
w1.copy_(_w1_local) # type: ignore

# Initialize w2
w2 = module.w2
if isinstance(w2, DTensor):
w2 = w2._local_tensor
w2_size = list(w2.shape) # type: ignore
w2_size[
0] = w2_size[0] * expert_process_group_size * weight_parallel_group_size
w2_size[0] = w2_size[0] * expert_process_group_size
_w2 = w2.new_empty(w2_size) # type: ignore
# MegaBlocks operates on w2 as x @ w2, so needs flipped fan mode
fused_param_init_helper(_w2, _flip_fan_mode(init_fn_), _fused)
_w2_local = _w2.chunk(expert_process_group_size, dim=0)[rank]
_w2_local_slice = _w2_local.chunk(weight_parallel_group_size,
dim=0)[weight_parallel_group_rank]
with torch.no_grad():
w2.copy_(_w2_local_slice) # type: ignore
w2.copy_(_w2_local) # type: ignore
if init_div_is_residual is not False:
with torch.no_grad():
w2.div_(div_is_residual) # type: ignore
Expand Down Expand Up @@ -567,19 +554,12 @@ def _megablocks_sparse_glu_generic_param_init_fn_(
)

# Init ported from _megablocks_sparse_mlp_generic_param_init_fn_ for v1
expert_process_group_size, rank, weight_parallel_group_size, weight_parallel_group_rank = 1, 0, 1, 0
expert_process_group_size, rank = 1, 0
if module.expert_parallel_group is not None:
expert_process_group_size = int(
module.expert_parallel_group.size(),
) # type: ignore
rank = int(module.expert_parallel_group.rank()) # type: ignore
if module.weight_parallel_group is not None:
weight_parallel_group_size = int(
module.weight_parallel_group.size(),
) # type: ignore
weight_parallel_group_rank = int(
module.weight_parallel_group.rank(),
) # type: ignore

hidden_size = int(module.hidden_size) # type: ignore

Expand All @@ -588,19 +568,16 @@ def _megablocks_sparse_glu_generic_param_init_fn_(
if isinstance(v1, DTensor):
v1 = v1._local_tensor
v1_size = list(v1.shape) # type: ignore
v1_size[
0] = v1_size[0] * expert_process_group_size * weight_parallel_group_size
v1_size[0] = v1_size[0] * expert_process_group_size

n_exp = v1_size[0] // hidden_size
_fused = (0, [(n + 1) * hidden_size for n in range(n_exp - 1)])

_v1 = v1.new_empty(v1_size) # type: ignore
fused_param_init_helper(_v1, init_fn_, _fused)
_v1_local = _v1.chunk(expert_process_group_size, dim=0)[rank]
_v1_local_slice = _v1_local.chunk(weight_parallel_group_size,
dim=0)[weight_parallel_group_rank]
with torch.no_grad():
v1.copy_(_v1_local_slice) # type: ignore
v1.copy_(_v1_local) # type: ignore


def _megablocks_mlp_generic_param_init_fn_(
Expand All @@ -623,41 +600,32 @@ def _megablocks_mlp_generic_param_init_fn_(
div_is_residual (float): The value by which parameter initialization is divided
if init_div_is_residual flag is enabled.
"""
expert_process_group_size, rank, weight_parallel_group_size, w_rank = 1, 0, 1, 0
expert_process_group_size, rank = 1, 0
if module.expert_parallel_group is not None:
expert_process_group_size = int(
module.expert_parallel_group.size(),
) # type: ignore
rank = int(module.expert_parallel_group.rank()) # type: ignore
if module.weight_parallel_group is not None:
weight_parallel_group_size = int(
module.weight_parallel_group.size(),
) # type: ignore
w_rank = int(module.weight_parallel_group.rank()) # type: ignore

_init_fn_ = _flip_fan_mode(init_fn_)

# Initialize w1
w1_size = list(module.w1.shape) # type: ignore
w1_size[0] = w1_size[0] * expert_process_group_size
w1_size[1] = w1_size[1] * weight_parallel_group_size
_w1 = module.w1.new_empty(w1_size) # type: ignore
stacked_param_init_helper(_w1, _init_fn_, module._stack_dim) # type: ignore
_w1_local = _w1.chunk(expert_process_group_size, dim=0)[rank]
_w1_local_slice = _w1_local.chunk(weight_parallel_group_size, dim=1)[w_rank]
with torch.no_grad():
module.w1.copy_(_w1_local_slice) # type: ignore
module.w1.copy_(_w1_local) # type: ignore

# Initialize w2
w2_size = list(module.w2.shape) # type: ignore
w2_size[0] = w2_size[0] * expert_process_group_size
w2_size[1] = w2_size[1] * weight_parallel_group_size
_w2 = module.w2.new_empty(w2_size) # type: ignore
stacked_param_init_helper(_w2, _init_fn_, module._stack_dim) # type: ignore
_w2_local = _w2.chunk(expert_process_group_size, dim=0)[rank]
_w2_local_slice = _w2_local.chunk(weight_parallel_group_size, dim=1)[w_rank]
with torch.no_grad():
module.w2.copy_(_w2_local_slice) # type: ignore
module.w2.copy_(_w2_local) # type: ignore
if init_div_is_residual is not False:
with torch.no_grad():
module.w2.div_(div_is_residual) # type: ignore
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-1b-eval.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ integrations:
command: |
cd llm-foundry/scripts/
composer eval/eval.py /mnt/config/parameters.yaml
image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest
name: mpt-1b-eval

compute:
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-1b-max-seq-len-8k.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ command: |
--out_root ./my-copy-c4 --splits train_small val_small \
--concat_tokens 8192 --tokenizer EleutherAI/gpt-neox-20b --eos_text '<|endoftext|>'
composer train/train.py /mnt/config/parameters.yaml
image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest
name: mpt-1b-ctx-8k-gpus-8

compute:
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-1b.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ command: |
eval_loader.dataset.split=val_small \
max_duration=100ba \
eval_interval=0
image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest
name: mpt-1b-gpus-8

compute:
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-benchmark-mpt.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ compute:
# cluster: TODO # Name of the cluster to use for this run
# gpu_type: a100_80gb # Type of GPU to use. We use a100_80gb in our experiments

image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest

integrations:
- integration_type: git_repo
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-convert-composer-to-hf.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ command: |
--hf_output_path s3://bucket/folder/hf/ \
--output_precision bf16 \

image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest
name: convert-composer-hf

compute:
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-hf-eval.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ gpu_num: 8
# gpu_type:
# cluster: # replace with your cluster here!

image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest

# The below is injected as a YAML file: /mnt/config/parameters.yaml
parameters:
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-hf-generate.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ command: |
"Here's a quick recipe for baking chocolate chip cookies: Start by" \
"The best 5 cities to visit in Europe are"

image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest
name: hf-generate

compute:
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-llama2-finetune.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ integrations:
command: |
cd llm-foundry/scripts
composer train/train.py /mnt/config/parameters.yaml
image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest
name: llama2-finetune

compute:
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-openai-eval.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ gpu_num: #
gpu_type: #
cluster: # replace with your cluster here!

image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest

# The below is injected as a YAML file: /mnt/config/parameters.yaml
parameters:
Expand Down
2 changes: 1 addition & 1 deletion mcli/mcli-pretokenize-oci-upload.yaml
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
name: c4-2k-pre-tokenized
image: mosaicml/llm-foundry:2.3.1_cu121-latest
image: mosaicml/llm-foundry:2.4.0_cu124-latest
compute:
gpus: 8 # Number of GPUs to use

Expand Down
1 change: 0 additions & 1 deletion scripts/train/yamls/pretrain/testing-moe.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@ model:
moe_num_experts: 4
moe_top_k: 2
moe_world_size: 1
moe_weight_parallelism: false
uniform_expert_assignment: false
n_heads: 2
n_layers: 2
Expand Down
6 changes: 3 additions & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@
'accelerate>=0.25,<0.34', # for HF inference `device_map`
'transformers>=4.43.2,<4.44',
'mosaicml-streaming>=0.8.1,<0.9',
'torch>=2.3.0,<2.4.1',
'torch>=2.4.0,<2.4.1',
'datasets>=2.19,<2.20',
'fsspec==2023.6.0', # newer version results in a bug in datasets that duplicates data
'sentencepiece==0.2.0',
Expand Down Expand Up @@ -118,8 +118,8 @@
]

extra_deps['megablocks'] = [
'megablocks==0.5.1',
'grouped-gemm==0.1.4',
'megablocks==0.6.1',
'grouped-gemm==0.1.6',
]

extra_deps['databricks-serverless'] = {
Expand Down
Loading
Loading