Skip to content

Commit

Permalink
clean up
Browse files Browse the repository at this point in the history
  • Loading branch information
dakinggg committed Jul 25, 2024
1 parent 710a3ed commit b7c44ef
Showing 1 changed file with 3 additions and 64 deletions.
67 changes: 3 additions & 64 deletions llmfoundry/callbacks/hf_checkpointer.py
Original file line number Diff line number Diff line change
Expand Up @@ -435,40 +435,6 @@ def _save_checkpoint(self, state: State, logger: Logger):

cpu_offload = True

# def dtensor_to_tensor_hook(
# module: nn.Module,
# state_dict: Dict[str, Any],
# prefix: str,
# *args: Any,
# ) -> Dict[str, Any]:
# dtensor_fqns = []
# for fqn in state_dict.keys():
# tensor = state_dict[fqn]
# if isinstance(tensor, DTensor):
# dtensor_fqns.append(fqn)
# tensor = tensor.full_tensor() # type: ignore
# if dist.get_global_rank() == 0:
# if cpu_offload:
# tensor = tensor.cpu()
# state_dict[fqn] = tensor
# if dist.get_global_rank() != 0:
# for fqn in dtensor_fqns:
# del state_dict[fqn]
# return state_dict

# def tensor_dtype_hook(
# module: nn.Module,
# state_dict: Dict[str, Any],
# prefix: str,
# *args: Any,
# ) -> Dict[str, Any]:
# for fqn in state_dict.keys():
# tensor = state_dict[fqn]
# if isinstance(tensor, torch.Tensor):
# state_dict[fqn] = tensor.to(dtype=self.dtype)
# del tensor
# return state_dict

# Add hook to move tensors to cpu to avoid CUDA OOM
def tensor_hook(
module: nn.Module,
Expand All @@ -486,49 +452,22 @@ def tensor_hook(
# Offload any DTensors to CPU
if cpu_offload:
tensor = tensor.cpu()
tensor = tensor.to(dtype=self.dtype)
state_dict[fqn] = tensor
else:
state_dict[fqn] = None
elif isinstance(tensor, torch.Tensor):
state_dict[fqn] = tensor.to(dtype=self.dtype)

if isinstance(state_dict[fqn], torch.Tensor):
state_dict[fqn] = state_dict[fqn].to(dtype=self.dtype)
del tensor
if dist.get_global_rank() != 0:
state_dict = {}
return state_dict

# def tensor_hook(
# module: nn.Module,
# state_dict: Dict[str, Any],
# prefix: str,
# *args: Any,
# ) -> Dict[str, Any]:
# dtensor_fqns = []
# for fqn in state_dict.keys():
# tensor = state_dict[fqn]
# if isinstance(tensor, DTensor):
# dtensor_fqns.append(fqn)
# tensor = tensor.full_tensor() # type: ignore
# if dist.get_global_rank() == 0:
# if cpu_offload:
# tensor = tensor.cpu()
# state_dict[fqn] = tensor
# if dist.get_global_rank() != 0:
# for fqn in dtensor_fqns:
# del state_dict[fqn]

# for fqn in state_dict.keys():
# if isinstance(state_dict[fqn], torch.Tensor):
# state_dict[fqn] = state_dict[fqn].to(dtype=self.dtype)

# return state_dict

hooks = []
for _, module in state_dict_model.named_modules():
if isinstance(module, FSDP):
hooks.append(module._register_state_dict_hook(tensor_hook),)


state_dict = get_model_state_dict(
state_dict_model,
options=StateDictOptions(
Expand Down

0 comments on commit b7c44ef

Please sign in to comment.