Skip to content

Commit

Permalink
Revert to manual CL callback
Browse files Browse the repository at this point in the history
  • Loading branch information
b-chu committed Sep 17, 2024
1 parent 0114f33 commit 661336a
Show file tree
Hide file tree
Showing 2 changed files with 74 additions and 220 deletions.
286 changes: 68 additions & 218 deletions llmfoundry/callbacks/curriculum_learning_callback.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright 2022 MosaicML LLM Foundry authors
# Copyright 2024 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

"""Enable curriculum learning by resuming with a different dataset.
Expand All @@ -7,228 +7,47 @@
the future.
"""

import copy
import logging
from typing import Any
from typing import Any, Dict

from composer import DataSpec
from composer.core import State, Time, TimeUnit, ensure_time
from composer.core import State
from composer.loggers import Logger
from streaming import StreamingDataset
from streaming.base.util import clean_stale_shared_memory
from torch.utils.data import DataLoader

from llmfoundry.interfaces import CallbackWithConfig
from llmfoundry.utils.exceptions import (
BaseContextualError,
TrainDataLoaderLocation,
)
from llmfoundry.utils.warnings import experimental_class

log = logging.getLogger(__name__)

__all__ = ['CurriculumLearning']


@experimental_class('CurriculumLearning callback')
class CurriculumLearning(CallbackWithConfig):
"""Starts an epoch with a different dataset when resuming from a checkpoint.
Example schedule:
[
{
'duration': <number>tok,
'train_loader': <dataloader parameters>, # matches top level train_loader
},
{
'duration': <number>tok,
'train_loader': <dataloader parameters>,
},
{
'duration': <number>tok,
'train_loader': <dataloader parameters>,
],
]
Args:
train_config (dict): The configuration of the dataset currently
train_config (Dict): The configuration of the dataset currently
being used. Note that this is the full train config and must
contain the 'train_loader', 'device_train_batch_size', and
'tokenizer' keys.
schedule (list[dict[str, Any]]): The list of datamixes to use and their
durations. Duration units must match max_duration and be in terms of
a TimeUnit that is supported by Iteration. The duration values must
be positive. There must be at least one datamix in the schedule. The
first datamix in the schedule must match the train_loader in the
train_config. On resumption, previously trained on datamixes and
durations cannot be changed. The duration of the current datamix
must be greater than the saved timestamp. The dataset must be a
StreamingDataset.
contain the 'train_loader' key.
dataset_index (int): The index of the dataset currently being used.
"""

def __init__(
self,
train_config: dict[str, Any],
schedule: list[dict[str, Any]],
):
# Ensure all duration units are in epochs or tokens and values are positive
self._schedule = schedule
if len(self._schedule) == 0:
raise ValueError('The schedule must have at least one datamix.')
for index, datamix in enumerate(self._schedule):
self._validate_datamix(datamix)

if (
index == 0 and
train_config['train_loader'] != datamix['train_loader']
):
raise ValueError((
'The first datamix in the schedule must match the '
'train_loader in the train_config.'
))

self._schedule_index = 0
self.device_train_batch_size = train_config['device_train_batch_size']
self.tokenizer = None

def init(self, state: State, logger: Logger):
del logger # unused

if not hasattr(state.model, 'tokenizer'):
raise ValueError('state.model must have a tokenizer attribute.')
self.tokenizer = state.model.tokenizer
def __init__(self, train_config: Dict, dataset_index: int):
self.dataset_index = dataset_index
self.saved_dataset_index = 0
self.all_dataset_configs = []
self.current_dataset_state = {}
# The current dataset config is resolved and passed in train.py
self.current_dataset_config = train_config['train_loader']

def before_load(self, state: State, logger: Logger):
del logger # unused

# Ensure all duration units are the same as max_duration
datamix_units = [datamix['duration'].unit for datamix in self._schedule]
assert state.max_duration is not None, 'max_duration should have beeen set.'
if any(state.max_duration.unit != unit for unit in datamix_units):
raise ValueError((
f'All durations in the schedule must have the same units as '
f'the max_duration. Expected {state.max_duration.unit}, but '
f'got {datamix_units}.'
))

# Ensure schedule duration is equal to max_duration
schedule_duration = Time(0, state.max_duration.unit)
for datamix in self._schedule:
assert isinstance(datamix['duration'], Time)
schedule_duration += datamix['duration']
if schedule_duration != state.max_duration:
raise ValueError((
'The sum of all durations in the schedule must be equal to the '
'max_duration.'
))

self._validate_dataloader(state.train_dataloader)

def after_load(self, state: State, logger: Logger):
del logger # unused
del logger

self._validate_dataloader(state.train_dataloader)

# If checkpoint was saved before iteration was incremented, we need to increment it now
duration = self._schedule[self._schedule_index]['duration']
if ((
duration.unit == TimeUnit.TOKEN and
state.timestamp.token_in_iteration >= duration.value
) or (
duration.unit == TimeUnit.EPOCH and
state.timestamp.epoch_in_iteration >= duration.value
)):
log.warning((
'The CurriculumLearning callback has detected that the '
'previous run did not correctly increment the iteration.'
))
self._schedule_index += 1
state.timestamp = state.timestamp.to_next_iteration()

def iteration_start(self, state: State, logger: Logger):
# Swap the dataset if starting a new iteration that's not the original datamix
if self._schedule_index > 0:
# TODO: trainer._train_data_spec should be updated whenever the dataloader is updated
# Dataloaders with the same prefix access the same shared memory
# which is stale
clean_stale_shared_memory()
datamix = copy.deepcopy(self._schedule[self._schedule_index])
data_spec = self._build_train_loader(
train_loader_config=datamix['train_loader'],
logger=logger,
)
state.set_dataloader(
dataloader=data_spec.dataloader,
dataloader_label='train',
)
state.train_dataloader = state.dataloader
self._validate_dataloader(state.train_dataloader)

# Set the length of the new iteration
state._iteration_length = self._schedule[self._schedule_index
]['duration']

def iteration_end(self, state: State, logger: Logger):
del state, logger # unused

self._schedule_index += 1

def state_dict(self):
return {
'schedule': self._schedule,
'schedule_index': self._schedule_index,
}

def load_state_dict(self, state: dict[str, Any]):
self._schedule_index = state['schedule_index']

# Ensure that the schedule has not changed on previously trained datamixes
for idx in range(state['schedule_index']):
if self._schedule[idx] != state['schedule'][idx]:
raise ValueError((
f'Previous datamixes must stay the same across ',
f'resumptions. Expected {state["schedule"][idx]} but got ',
f'{self._schedule[idx]}',
))

# Ensure that the datamix has not changed on the current datamix
current_loader = self._schedule[self._schedule_index]['train_loader']
saved_loader = state['schedule'][self._schedule_index]['train_loader']
if current_loader != saved_loader:
raise ValueError((
f'The current datamix must stay the same across resumptions. ',
f'Expected {saved_loader} but got {current_loader}',
))

# Ensure that the current datamix duration is in the correct units
duration = self._schedule[self._schedule_index]['duration']
if duration.unit != TimeUnit.TOKEN and duration.unit != TimeUnit.EPOCH:
raise ValueError((
f'Duration must be in terms of tokens or epochs, but got ',
f'{duration.unit}.',
))

def _build_train_loader(
self,
train_loader_config: dict[str, Any],
logger: Logger,
) -> DataSpec:
from llmfoundry.data.dataloader import build_dataloader

# Copied from scripts/train/train.py
log.info(
f'Building train loader in CurriculumLearning callback for dataset {self._schedule_index}',
)
assert self.tokenizer is not None
try:
return build_dataloader(
train_loader_config,
self.tokenizer,
self.device_train_batch_size,
)
except BaseContextualError as e:
e.location = TrainDataLoaderLocation
raise e

def _validate_dataloader(self, train_loader: Any):
# Save the current dataset state so we can restore it correctly
# if we are resuming with a new dataset.
train_loader = state.train_dataloader
# Check if we are using a DataLoader and StreamingDataset
if not isinstance(train_loader, DataLoader):
raise ValueError(
Expand All @@ -242,23 +61,54 @@ def _validate_dataloader(self, train_loader: Any):
f'because it requires loading and saving dataset state. ',
f'Instead, got a dataset of type {type(dataset)}',
)
assert isinstance(dataset, StreamingDataset)
# Save the current dataset state so we can restore it if needed.
self.current_dataset_state = dataset.state_dict( # type: ignore
num_samples=0, from_beginning=False)

def _validate_datamix(self, datamix: dict[str, Any]):
if 'duration' not in datamix:
raise ValueError('Each datamix must have a duration.')
datamix['duration'] = ensure_time(
datamix['duration'],
TimeUnit.EPOCH,
)
if datamix['duration'].value <= 0:
raise ValueError('The duration must be positive.')
if (
datamix['duration'].unit != TimeUnit.EPOCH and
datamix['duration'].unit != TimeUnit.TOKEN
):
raise ValueError(
'Schedules can only be defined in terms of epochs or tokens.',
)
def after_load(self, state: State, logger: Logger):
del logger

# As saved_dataset_index is loaded from state_dict, this only runs when
# a user explicitly increments the dataset_index and not on any other
# resumption, including autoresume.
train_loader = state._train_dataloader
assert isinstance(
train_loader,
DataLoader,
), 'CurriculumLearning callback requires a DataLoader.'
dataset = train_loader.dataset
assert isinstance(
dataset,
StreamingDataset,
), 'CurriculumLearning callback requires a StreamingDataset.'
if self.saved_dataset_index < self.dataset_index:
# Ignore the dataset state that was read in from the checkpoint, and
# replace with the new dataset state. This preserves resumption info.
if self.current_dataset_state['epoch'] < 0:
# Make sure the epoch in the loaded state dict is not negative.
# Since `__iter__` has not yet been called on the dataset, the
# epoch index in the dataset will still be -1. We need to ensure
# that we set the epoch correctly to 0 in this case.
self.current_dataset_state['epoch'] = 0
dataset.load_state_dict( # type: ignore
self.current_dataset_state)
# Start a new epoch since we are using a new dataset.
# This will also reset the sample_in_epoch written to checkpoint,
# making sure that subsequent resumptions proceed correctly.
state.timestamp = state.timestamp.to_next_epoch()
# Append the new dataset config to the list of all dataset configs.
self.all_dataset_configs.append(self.current_dataset_config)
elif self.dataset_index == 0 and len(self.all_dataset_configs) == 0:
# Make sure to track our current dataset config if we are just starting training.
self.all_dataset_configs.append(self.current_dataset_config)

def state_dict(self):
return {
'dataset_index': self.dataset_index,
'all_dataset_configs': self.all_dataset_configs,
}

if 'train_loader' not in datamix:
raise ValueError('Each datamix must have a train_loader.')
def load_state_dict(self, state: Dict[str, Any]):
self.saved_dataset_index = state.get('dataset_index', 0)
self.all_dataset_configs = state.get('all_dataset_configs', [])
8 changes: 6 additions & 2 deletions tests/callbacks/test_curriculum_learning_callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,9 @@ def test_curriculum_learning_callback_before_load(
callback.before_load(state, logger)


def test_curriculum_learning_callback_after_load(build_tiny_mpt: Callable,):
def test_curriculum_learning_callback_after_load(
build_tiny_mpt: Callable,
):
model = build_tiny_mpt(loss_fn='torch_crossentropy')
state = State(
model=model,
Expand Down Expand Up @@ -189,7 +191,9 @@ def test_curriculum_learning_callback_iteration(
assert state._iteration_length == Time(2, TimeUnit.EPOCH)


def test_curriculum_learning_callback_state_dict(build_tiny_mpt: Callable,):
def test_curriculum_learning_callback_state_dict(
build_tiny_mpt: Callable,
):
model = build_tiny_mpt(loss_fn='torch_crossentropy')
state = State(
model=model,
Expand Down

0 comments on commit 661336a

Please sign in to comment.