Skip to content

Commit

Permalink
Merge branch 'main' into milo/fix-exception-serialization
Browse files Browse the repository at this point in the history
  • Loading branch information
milocress authored May 23, 2024
2 parents ee6a3a0 + c213ea8 commit 0bd647a
Show file tree
Hide file tree
Showing 7 changed files with 705 additions and 53 deletions.
5 changes: 5 additions & 0 deletions llmfoundry/callbacks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,8 @@
from llmfoundry.callbacks.log_mbmoe_tok_per_expert_callback import (
MegaBlocksMoE_TokPerExpert,
)
from llmfoundry.callbacks.loss_perp_v_len_callback import \
LossPerpVsContextLengthLogger
from llmfoundry.callbacks.monolithic_ckpt_callback import (
MonolithicCheckpointSaver,
)
Expand Down Expand Up @@ -52,6 +54,8 @@
callbacks.register('mbmoe_tok_per_expert', func=MegaBlocksMoE_TokPerExpert)
callbacks.register('run_timeout', func=RunTimeoutCallback)

callbacks.register('loss_perp_v_len', func=LossPerpVsContextLengthLogger)

callbacks_with_config.register('async_eval', func=AsyncEval)
callbacks_with_config.register('curriculum_learning', func=CurriculumLearning)

Expand All @@ -66,4 +70,5 @@
'MegaBlocksMoE_TokPerExpert',
'AsyncEval',
'CurriculumLearning',
'LossPerpVsContextLengthLogger',
]
351 changes: 351 additions & 0 deletions llmfoundry/callbacks/loss_perp_v_len_callback.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,351 @@
# Copyright 2024 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

from typing import Any, Dict, Mapping, Optional, Tuple

import torch
from composer.core import Callback, State
from composer.loggers import Logger, MLFlowLogger
from composer.utils import dist
from torchmetrics import Metric

from llmfoundry.models.mpt import ComposerMPTCausalLM
from llmfoundry.utils.warnings import experimental_class

__all__ = [
'LossPerpVsContextLengthLogger',
]


@experimental_class('LossPerpVsContextLengthLogger')
class LossPerpVsContextLengthLogger(Callback):
"""Logs the average loss and perplexity for every context length.
Note: Currently only works with MLFlow logger.
Args:
log_batch_interval (int): The interval for logging. Currently logging takes longer because MLFlow downloads the table, appends rows to it, and then re-uploads it. Once this is fixed, log_batch_interval will be removed and this will always log as soon as the metric is computed.
compute_batch_interval (int): The interval for computing the metric.
ignore_index (int): Specifies a target value that is ignored for computing loss.
"""

def __init__(
self,
log_batch_interval: int,
compute_batch_interval: int,
ignore_index: int = -100,
):
if compute_batch_interval > log_batch_interval:
raise ValueError(
'log_batch_interval is shorter than the compute_batch_interval for LossPerpVsContextLengthLogger.',
)
self.log_batch_interval = log_batch_interval
self.compute_batch_interval = compute_batch_interval
self.ignore_index = ignore_index
self.metric_dict = {}
self.loss_perp_v_len = LossPerpVLen(ignore_index)

def init(self, state: State, logger: Logger) -> None:
if not isinstance(state.model, ComposerMPTCausalLM):
raise ValueError(
'LossPerpVsContextLengthLogger only supported for ComposerMPTCausalLM models.',
)
if state.model.shift_labels is None:
raise ValueError(
'state.model.shift_labels should be set for LossPerpVsContextLengthLogger.',
)
if all(
not isinstance(destination, MLFlowLogger)
for destination in logger.destinations
):
raise NotImplementedError(
'Did not find MLflow in the list of loggers. LossPerpVsContextLengthLogger is only implemented for the MLflow logger.',
)

def after_backward(self, state: State, logger: Logger) -> None:
if state.timestamp.batch.value % self.compute_batch_interval == 0:
sequence_id = state.batch['sequence_id'
] if 'sequence_id' in state.batch else None
labels = state.batch['labels']
if state.model.shift_labels:
labels[:, :-1] = labels[:, 1:].detach().clone()
labels[:, -1] = -100
seq_parallel_world_size = getattr(
state.model.model.transformer,
'seq_parallel_world_size',
1,
)
seq_parallel_rank = state.model.model.transformer.seq_parallel_rank if seq_parallel_world_size > 1 else 0

if isinstance(state.outputs, Mapping):
logits = state.outputs['logits'] # type: ignore
elif isinstance(state.outputs, torch.Tensor):
logits = state.outputs
else:
raise Exception(
f'Type {type(state.outputs)} for the output is unsupported.',
)

if labels.shape[1] != logits.shape[1]:
raise ValueError(
f'The length of labels, {labels.shape[1]=} does not match the length of logits {logits.shape[1]=}.',
)

labels, logits = self.preprocess_metric_inputs(
sequence_id,
labels,
logits,
seq_parallel_world_size,
seq_parallel_rank,
)

self.loss_perp_v_len.update(
labels,
logits,
sequence_id,
state.model.loss_fn,
)

def batch_end(self, state: State, logger: Logger) -> None:
if state.timestamp.batch.value % self.compute_batch_interval == 0:
current_metric_dict = self.loss_perp_v_len.compute()
if dist.get_global_rank() == 0:
for k, v in current_metric_dict.items():
v = v.tolist()
v.append(
state.timestamp.batch.value,
) # Add the current batch index as the last column
if k not in self.metric_dict:
self.metric_dict[k] = []
self.metric_dict[k].append(v)
if state.timestamp.batch.value % self.log_batch_interval == 0 and dist.get_global_rank(
) == 0:
for k, v in self.metric_dict.items():
columns = []
columns = [
f'context_length_{i}' for i in range(len(v[0]) - 1)
] # len(v[0]) - 1 because the last column is the batch index
columns.append(
'batch_index',
) # Add batch as the last column name
for destination in logger.destinations:
if isinstance(destination, MLFlowLogger):
destination.log_table(
columns=columns,
rows=v,
name=f'metrics/train/LossPerpVLenTable/{k}',
step=state.timestamp.batch.value,
)
self.metric_dict = {}

def preprocess_metric_inputs(
self,
sequence_id: Optional[torch.Tensor],
labels: torch.Tensor,
logits: torch.Tensor,
seq_parallel_world_size: int,
seq_parallel_rank: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
del sequence_id, seq_parallel_rank
if seq_parallel_world_size > 1:
raise ValueError(
'LossPerpVsContextLengthLogger does not support sequence parallelism',
)

return labels, logits


class LossPerpVLen(Metric):

full_state_update = False

def __init__(
self,
ignore_index: int,
dist_sync_on_step: bool = False,
):
super().__init__(dist_sync_on_step=dist_sync_on_step)

self.ignore_index = ignore_index
self.add_state('sum_loss', default=torch.Tensor(), dist_reduce_fx='sum')
self.add_state(
'sum_perplexity',
default=torch.Tensor(),
dist_reduce_fx='sum',
)
self.add_state(
'sum_length',
default=torch.Tensor(),
dist_reduce_fx='sum',
)

self.add_state(
'sum_loss_seq_id',
default=torch.Tensor(),
dist_reduce_fx='sum',
)
self.add_state(
'sum_perplexity_seq_id',
default=torch.Tensor(),
dist_reduce_fx='sum',
)
self.add_state(
'sum_length_seq_id',
default=torch.Tensor(),
dist_reduce_fx='sum',
)

def update(
self,
labels: torch.Tensor,
logits: torch.Tensor,
sequence_id: Optional[torch.Tensor],
loss_fn: Any,
) -> None:
"""Updates the internal state with results from a new batch.
Args:
labels (torch.Tensor): A Tensor of ground-truth values to compare against.
logits (torch.Tensor): A Tensor of labels.
sequence_id (torch.Tensor | None): The sequence ids for tokens.
loss_fn (Any): The cross entropy loss to use.
"""
valid_labels_mask = torch.where(
labels != self.ignore_index,
torch.ones_like(labels),
torch.zeros_like(labels),
)
bsz, seq_len = labels.shape
loss = loss_fn(logits.view(bsz * seq_len, -1), labels.view(-1))
loss = loss.view(bsz, seq_len)
perplexity = torch.exp(loss)

if self.sum_loss.numel() == 0:
self.sum_loss = torch.zeros( # type: ignore
seq_len,
device=loss.device,
dtype=loss.dtype,
)
self.sum_perplexity = torch.zeros( # type: ignore
seq_len,
device=loss.device,
dtype=loss.dtype,
)
self.sum_length = torch.zeros( # type: ignore
seq_len,
device=loss.device,
dtype=torch.long,
)
self.sum_loss_seq_id = torch.zeros( # type: ignore
seq_len,
device=loss.device,
dtype=loss.dtype,
)
self.sum_perplexity_seq_id = torch.zeros( # type: ignore
seq_len,
device=loss.device,
dtype=loss.dtype,
)
self.sum_length_seq_id = torch.zeros( # type: ignore
seq_len,
device=loss.device,
dtype=torch.long,
)

self.sum_loss += torch.sum(loss, dim=(0))
self.sum_perplexity += torch.sum(perplexity, dim=(0))
self.sum_length += valid_labels_mask.sum(dim=0)

if sequence_id is not None:
seq_id_expanded = torch.nn.functional.one_hot(
sequence_id,
).transpose(-1, -2)
seq_lens = seq_id_expanded.sum(dim=-1)
max_num_seq = seq_lens.shape[1]
seq_tok_ids = torch.arange(seq_len, device=sequence_id.device)[
None, None, :].expand(bsz, max_num_seq, -1)
mask = seq_tok_ids < seq_lens[:, :, None]
seq_len_offsets = torch.nn.functional.pad(
seq_lens.cumsum(dim=1)[:, :-1],
(1, 0),
value=0,
)
seq_tok_ids = seq_tok_ids + seq_len_offsets[:, :, None]
seq_tok_ids = torch.where(
mask,
seq_tok_ids,
torch.zeros_like(seq_tok_ids),
)

loss = loss[:, None, :].expand(-1, max_num_seq, -1)
perplexity = perplexity[:, None, :].expand(-1, max_num_seq, -1)
valid_labels_mask = valid_labels_mask[:, None, :].expand(
-1,
max_num_seq,
-1,
)
loss = torch.where(
mask,
torch.gather(input=loss, dim=2, index=seq_tok_ids),
torch.zeros_like(loss),
)
perplexity = torch.where(
mask,
torch.gather(input=perplexity, dim=2, index=seq_tok_ids),
torch.zeros_like(perplexity),
)
mask = torch.where(
mask,
torch.gather(input=valid_labels_mask, dim=2, index=seq_tok_ids),
torch.zeros_like(valid_labels_mask),
)

self.sum_loss_seq_id += torch.sum(loss, dim=(0, 1))
self.sum_perplexity_seq_id += torch.sum(perplexity, dim=(0, 1))
self.sum_length_seq_id += torch.sum(mask, dim=(0, 1))

def compute(self) -> Dict[str, torch.Tensor]:
"""Aggregate the state over all processes to compute the metric.
Returns:
loss: The loss averaged across all batches as a :class:`~torch.Tensor`.
"""
# Return average loss over entire dataset
sum_perplexity = torch.where(
self.sum_length != 0,
self.sum_perplexity,
-1,
)
sum_loss = torch.where(self.sum_length != 0, self.sum_loss, -1)
sum_length = torch.where(self.sum_length != 0, self.sum_length, 1)

sum_perplexity_seq_id = torch.where(
self.sum_length_seq_id != 0,
self.sum_perplexity_seq_id,
-1,
)
sum_loss_seq_id = torch.where(
self.sum_length_seq_id != 0,
self.sum_loss_seq_id,
-1,
)
sum_length_seq_id = torch.where(
self.sum_length_seq_id != 0,
self.sum_length_seq_id,
1,
)

return {
'mean_loss_v_len':
sum_loss / sum_length,
'mean_perplexity_v_len':
sum_perplexity / sum_length,
'sum_length':
self.sum_length,
'mean_loss_seq_id_v_len':
sum_loss_seq_id / sum_length_seq_id,
'mean_perplexity_seq_id_v_len':
sum_perplexity_seq_id / sum_length_seq_id,
'sum_length_seq_id':
self.sum_length_seq_id,
}
Loading

0 comments on commit 0bd647a

Please sign in to comment.